期刊文献+

基于k-中心点法的改进粒子群算法在旅行商问题中的应用 被引量:15

Improved particle swarm optimization based on k-center and its application in traveling salesman problem
下载PDF
导出
摘要 为将面向连续优化的粒子群优化算法应用于旅行商问题的求解,提出了旅行商问题的权重编码方案。该方案将属于组合优化的旅行商问题转化为连续优化问题,同时保留了粒子群算法的易操作性和高效性。针对粒子群算法易陷入局部最优的问题,提出了适合旅行商问题的基于k-中心点法的改进措施。该措施利用简单匹配系数构建粒子群的相异度矩阵,在此基础上采用k-中心点法对粒子群进行聚类分析,实现了粒子之间的信息交换,扩大了粒子的搜索空间,避免算法陷入局部最优。最后,用旅行商问题标准库的4个算例验证了权重编码方案和改进粒子群算法的有效性。 To apply Particle Swarm Optimization (PSO) algorithm oriented to continuous optimization problems in solving Traveling Salesman Problem (TSP), a new coding method based on the priority was put forward to transform the TSP from combinatorial optimization to continuous optimization. And the easy operation and high efficiency of the PSO were reserved. Then an innovative approach based on k-center algorithm was proposed with purpose of preventing PSO algorithm from local optimum. In this approach, the dissimilarity matrix was constructed by simple matching coefficient. Based on this, the k-center algorithm was used to execute cluster analysis on the particle swarm, which made particles exchange information with each other and search the best solution in a larger solution space than ever, so as to prevent the algorithm from local optimum. Finally, some TSPLIB examples were used to verify the effectiveness of the improved PSO in the TSP.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2007年第1期99-104,共6页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(70272043)。~~
关键词 旅行商问题 粒子群优化算法 聚类分析 k-中心点法 traveling salesman problem particle swarm optimization algorithm cluster analysis k- center
  • 相关文献

参考文献11

二级参考文献46

  • 1张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3[1]Kennedy j, Eberhart R. Particle Swarm Optimization[C]. Perth,Australia: Proc. IEEE Int. Conf. on Neural Networks, 1995; 1942-1948 被引量:1
  • 4[2]Reynolds C W. Flocks, Herds and Schools: A Distributed Behavioral Model[J]. Computer Graphic, 1987, 21(4):25-34 被引量:1
  • 5[3]Shi Y, Eberhart R C. Parameter Selection in Particle Swarm Optimization[J]. Evolutionary Programming Ⅶ, Lecture Notes in Computer Science, Springer, 1998 被引量:1
  • 6[4]Shi Y, Eberhart R C. A modified Particle Swarm Optimizer[C]. Anchorage, Alaska: IEEE International Conference on Evolutionary Computation, 1998-05:69-73 被引量:1
  • 7[5]Beekman M, Ratnieks F L W. Long-rang Foraging by the Honey-bee, Apis Mellifera L [J]. Functional Ecologicy, 2000,(14):490-496 被引量:1
  • 8[6]Wilson E O. Sociobiology: The New Synthesis[M]. Cambridge, MA:Belknap Press, 1975 被引量:1
  • 9VARELA G N, SINCLAIR M C. Ant colony optimization for virtual--wavelength --path routing and wavelength allocation[A]. Proceedings of the 1999 Congress on Evolutionary Computation [C]. Washington DC: IEEE, 1999. 1809--1816. 被引量:1
  • 10BAUER A, BULLNHEIMER B, HARTL R F, STRAUSSC. An ant colony optimization approach for the single machine total tardiness problem[A]. Proceedings of the 1999 Congresson Evolutionary Computation [C]. Washington DC: IEEE,1999. 1445-- 1450. 被引量:1

共引文献334

同被引文献152

引证文献15

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部