期刊文献+

任意球冠下Stokes-Neumman混合边值问题的球谐函数有限逼近方法 被引量:1

Spherical Harmonic Finite Approximation Method for the Stokes-Neumman Mixed Boundary Value Problem with a Sphere Cap
原文传递
导出
摘要 首先研究了任意球冠下Stokes-Neumman混合边值问题的求解方法,然后利用EGM08重力场模型对建立的求解方法进行模拟计算。结果表明,给出的解算方法能达到亚mm量级的精度。作为Stokes-Neumman混合边值问题的应用拓展,用于精化局部大地水准面,结果表明,若不顾及边界效应,计算精度至少达到5cm。因此,本文建立的Stokes-Neumman混合边值问题的解法不仅理论上可行,而且能保持足够的计算精度,适用于多种类型重力观测数据的综合处理。 A method solving the Stokes-Neumman Mixed Boundary Value Problem (S-N MBVP) with a sphere cap is studied in this paper. First, we discuss the method for S N MBVP with the polar cap. Then S-N MBVP with general sphere cap is solved with the help of coordinate transformation. The transformation between spherical coefficients in different coordinate systems is also studied. By making use of the imitation computation for the EGM08 model, it is concluded that the solution method given in the paper can be accurate to submillimeter level. S-N MBVP can be used to refine the local geoid, our results show the recovered height of a geoid in the interior of the spherical cap can reach to the accuracy of 5 centimeters. Our results show that the proposed method not only is effective in theory, but also has sufficient precision to deal with many kinds of gravity data.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2014年第1期65-69,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41274034 41074015 41104047)~~
关键词 重力场 任意球冠 混合边值问题 球谐函数 gravity field sphere cap mixed boundary value problems spherical harmonics function
  • 相关文献

参考文献2

二级参考文献22

  • 1YU Jinhai1,2 & ZHANG Chuanding2 1. Institute of Geodesy and Geophysics of Chinese Academy of Sciences, Wuhan 430077, China,2. Zhengzhou Information Engineering University, Zhengzhou 450052, China.The GPS-gravimetry boundary value problem[J].Science China Earth Sciences,2005,48(3):398-405. 被引量:1
  • 2彭富清,夏哲仁.超高阶扰动场元的计算方法[J].地球物理学报,2004,47(6):1023-1028. 被引量:10
  • 3朱灼文,于锦海.扰动重力位混合边值问题的适定性和估计理论[J].科学通报,1995,40(2):154-157. 被引量:7
  • 4Holota P. The altimetry-gravimetry boundary value problem: Weak solution, V-Ellipticity. Boll. Geod. Sc. Aff., 1983, 112:70 - 84 被引量:1
  • 5Sanso F. A discussion on the altimetry-gravimetry problem. In Geodesy in Transition, 1983,71 - 107 被引量:1
  • 6Svensson S L. Some remarks on the altimetry-gravimetry problem.Manu. Geod., 1988, 13:63-74 被引量:1
  • 7Svensson S L. Pseudodifferential operators-A new approach to the boundary problem of physical geodesy. Manu. Geod. 1983, 8:322- 342 被引量:1
  • 8Hwang C, Hsu H Y, Jang R J. Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applicationsof deflection-geoid and inverse vening meinesz formulae. Jour. of Geod. , 2002, 76:407-418 被引量:1
  • 9Andersen O, Knudsen P. Global marine gravity from the ERS-1 and geosat geodetic mission altimetry. J. Geophys. Res: 1998, 103:8129 - 8137 被引量:1
  • 10Yu J,X Wu. The solution of mixed boundary value problems with the reference ellipsoid as boundary. Jour. of Geod. 1997, 71: 454 -460 被引量:1

共引文献6

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部