期刊文献+

精度分类量测数据的变分贝叶斯自适应Kalman滤波算法 被引量:2

Variational Bayesian Adaptive Kalman Filtering Algorithm for Measurement Data with Accuracy Category
下载PDF
导出
摘要 针对带有精度分类信息的方差未知量测数据的滤波问题,本文提出了一种扩展的变分贝叶斯自适应Kalman滤波(EVB-AKF)算法。该算法在量测数据精度等级不变或降低时将后验分布参数修正为原VB-AKF算法外推近似值与精度分类信息对应的方差上界的加权和的形式,并在精度等级提高时利用精度分类信息重置后验分布参数,解决了VB-AKF算法后验分布参数一阶常系数模型不能完全适应量测噪声方差动态变化的问题。仿真结果表明,该算法能够快速有效的估计出动态变化的量测噪声方差,并且能够有效的实现数据滤波。 An extended variational Bayesian adaptive Kalman filtering (EVB-AKF) algorithm is presented for the filtering of measurement data corrupted by noise with unknown variance but accuracy category information.The proposed algorithm modifies the posterior distribution parameter as follow:when the accuracy level of measurement data does not change or decreases,it is assigned to the weighted sum of the extrapolate approximation of the posterior distribution parameter in VB-AKF and the upper variance bound in the accuracy category information; when accuracy level increases,it is reset to the upper variance bound in the accuracy category information.Thus the problem that the first-order constant coefficient model of the posterior distribution parameter in VB-AKF cannot fully adapt to the measurement noise variance dynamics is solved.Simulation results show that the proposed algorithm can estimate the dynamic varying measurement noise variance effectively and efficiently,thus achieve an effective data filtering.
出处 《信号处理》 CSCD 北大核心 2013年第11期1482-1487,共6页 Journal of Signal Processing
基金 国家科技支撑计划(2011BAH24B12) 教育部博士点基金(20124408110002) 武器装备预研项目(XXXX020602) 深圳市科技计划项目(JCYJ20130329105816574)
关键词 变分贝叶斯 精度分类信息 一阶模型 量测噪声方差估计 variational Bayesian accuracy category information first-order model estimation of measurement noise variance
  • 相关文献

参考文献7

  • 1Grewal M S, Andrews A P. Kalman filtering, theory and practice using Matlab[ M ]. 3rd Edition. New York: John Wiley & Sons, 2008. 被引量:1
  • 2郝燕玲,张召友.基于VB-UKF的SINS/GPS自适应融合技术[J].华中科技大学学报(自然科学版),2012,40(1):54-57. 被引量:10
  • 3Ding W, Wang J, Rizos C, et al. Improving adaptive Kalman estimation in GPS/INS integration[ J]. The Jour- nal of Navigation, 2007, 60(3): 517-529. 被引量:1
  • 4Soken H E, Hajiyev C. Adaptive unscented Kalman filter with multiple fading factors for pico satellite attitude estima- tion[ C ]//Proceedings of 4th International Conference on Recent Advances Space Technologies. Istanbul, Turkey, 2009 : 541-529. 被引量:1
  • 5Smidl V, Quinn A. Variational Bayesian Filtering [ J ]. IEEE Transactions on Signal Processing, 2008, 56(10) : 5020 -5030. 被引量:1
  • 6Sarkka S, Nummenmaa A. Recursive Noise Adaptive Kal- man Filtering by Variational Bayesian Approximations[ J ]. IEEE Transactions on Automatic Control, 2009, 54 ( 3 ) : 596- 600. 被引量:1
  • 7陈金广,李洁,高新波.双重迭代变分贝叶斯自适应卡尔曼滤波算法[J].电子科技大学学报,2012,41(3):359-363. 被引量:7

二级参考文献20

  • 1Grewal M S, Andrews A P. Kalman filtering, theory and practice using Matlah[M]. 3rd Edition. New York: John Wiley & Sons, 2008. 被引量:1
  • 2Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for the nonlinear transformation of means and covariances in linear filters [J]. IEEE Transac- tions on Automatic Control, 2000, 45(3): 477-482. 被引量:1
  • 3Jwo D J, Weng T P. An adaptive sensor fusion meth- od with applications in integrated navigation[J]. The Journal of Navigation, 2008, 61(4): 705-721. 被引量:1
  • 4Ding W, Wang J, Rizos C, et al. Improving adaptive Kalman estimation in GPS/INS integration[J], The Journal of Navigation, 2007, 60(3): 517-529. 被引量:1
  • 5Soken H E, Hajiyev C. Adaptive unscented Kalman filter with multiple fading factors for pico satellite at- titude estimation[C]//Proceedings of 4th Internation- al Gonference on Recent Advances Space Technolo- gies. Istanbul: Elsevier, 2009: 541-546. 被引量:1
  • 6Sarkka S, Nummenmaa A. Recursive noise adaptive Kalman filtering by variational Bayesian approxima- tions[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 596-600. 被引量:1
  • 7Ali J, Ullah B M M. Performance comparison among some nonlinear filters for a low cost SINS/GPS inte- grated solution [J]. Nonlinear Dynamics, 2010, 61(3) :491-502. 被引量:1
  • 8I MEHRA R K. Approaches to adaptive filtering[J]. IEEE Transactions on Automatic Control, 1972, 17(5): 693-698. 被引量:1
  • 9LI X R, BAR-SHALOM Y. A recursive multiple model approach to noise identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 671-684. 被引量:1
  • 10SaRKKa S, NUMMENMAA A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 596-600. 被引量:1

共引文献13

同被引文献22

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部