期刊文献+

利用伪氨基酸组分和支持向量机预测抗冻蛋白

Predicting antifreeze proteins by using pseudo amino acid composition and support vector machine
下载PDF
导出
摘要 抗冻蛋白是一类具有提高生物抗冻能力的蛋白质。抗冻蛋白能够特异性的与冰晶相结合,进而阻止体液内冰核的形成与生长。因此,对抗冻蛋白的生物信息学研究对生物工程发展,提高作物抗冻性有重要的推动作用。本文采用由400条抗冻蛋白序列和400条非抗冻蛋白序列构成数据集,以伪氨基酸组分为特征,利用支持向量机分类算法预测抗冻蛋白,对训练集预测精度达到91.3%,对测试集预测精度达到78.8%。该结果证明伪氨基酸组分能够很好的反映抗冻蛋白特性,并能够用于预测抗冻蛋白。 Antifreeze protein (AFP) is a kind of protein that can improve the antifreeze capability of organisms. They specifically bind to ice crystals to inhibit growth and recrystallization of ice. It is very important for bioengi- neering and for improving antifreeze capability of crop to accurately identify AFPs. The present study constructed a benchmark dataset including 400 AFPs and 400 non-AFPs. By using pseudo amino acid composition as parameters, support vector machine was applied to perform prediction. We finally achieved overall accuracies of 91.3% and 78.8%, respectively for training set and test set. These results suggest that pseudo amino acid composition can describe the characteristics of AFPs and can be used for AFPs prediction.
作者 许嘉
出处 《生物信息学》 2013年第4期297-299,共3页 Chinese Journal of Bioinformatics
基金 内蒙古科技大学青年创新基金(2011NCL048)资助
关键词 抗冻蛋白 伪氨基酸组分 支持向量机 Antifreeze protein Pseudo amino acid composition Support vector machine
  • 相关文献

参考文献6

  • 1Cai-vaj al - flondanelli PA, Marshall SH, Guzman F. Antifreeze glyco-protein agents: structural requirements for aclivity[J]. Journal ScienceFood Agricuture, 2011, 91( 14) :2507-2510. 被引量:1
  • 2Gamer J, Harding MM. Design and synthesis of antifreeze glyco-proteins and mimics [ J ]. Chembiochem, 2010,11(18): 2489 -2498. 被引量:1
  • 3Kandaswamy KK, Chou KC, Martinetz T, Moller S, SuganthanPN, Sridharan S, Pugalenthi G. AFP-Pred : A random forest ap-proach for predicting antifreeze proteins from sequence-derivedproperties[ J]. Journal of Theoretical Biology, 2011, 270( 1) :56-62. 被引量:1
  • 4Zhao Xiaowei, Ma Zhiqiang, Yin Minghao. Using support vectormachine and evolutionary profiles to predict antifreeze protein se-quences[ J]. Intemtional Journal of Molecular Science, 2012,13(2):2196-2207. 被引量:1
  • 5Chou KC. Prediction of protein cellular attributes using pseudo-a-mino acid composition: J]. Proteins, 2001,43(3) : 246-255. 被引量:1
  • 6Fan RE, Chen PH, Lin CJ. Working set selection using the sec-ond order information for training SVM[ J]. Journal of MultivariateAnalysis, 2005, 6: 1889-1918. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部