摘要
设G=(V,E)为简单图,V和E分别表示图的点集和边集.图G的一个k-团染色是指点集V到色集{1,2,…,k}的一个映射,使得G的每个至少含两个点的极大团都至少有两种颜色.分别给出了任意两个图的团色数与它们通过笛卡尔积、Kronecker积、强直积或字典积运算后得到的积图的团色数之间的关系.
Let G = (V,E) be a simple graph with vertex set V and edge set E. A k-clique-coloring of G is a mappingФ : V→ {1, 2, … , k}, such that no maximal clique of size at least two is monochromatic. The clique-coloring number of G is the smallest k for which c is a k-clique-coloring of G. In this paper we investigate the clique-coloring numbers of Cartesian product, Kronecker product, strong product and lexicographical product of two graphs.
出处
《运筹学学报》
CSCD
北大核心
2013年第4期103-108,共6页
Operations Research Transactions
基金
国家自然科学基金(No.11171207)
关键词
团染色
笛卡尔积
KRONECKER积
强直积
字典积
clique coloring, Cartesian product, Kronecker product, strong product, lexicographical product