摘要
对简单图G(V,E),若存在自然数κ(1≤κ≤Δ(G))和映射f:E(G)→{1,2,…,κ}使得对任意相邻两点u,v∈V(G),uv∈E(G),当d(u)=d(v)时,有C(u)=C(u),则f为G的κ-邻点可约边染色(简记为κ-AVREC of G),而x′_(aur)(G)=max{κ|κ-AVREC of G}称为G的邻点可约边染色数.其中C(u)={f(uv)|uv∈E(G)}.证明了联图在若干情况下的邻点可约边染色定理,得到了S_n+S_n,F_n+F_n,W_n+W_n,S_n+F_n,S_n+W_n和F_n+W_n的邻点可约边色数.
Let G be a simple graph, k is a positive integer, f is a mapping from E(G) to {1, 2,…, k}, such that uv, uw ∈ E(G), d(u) = d(v);and c(u) = c(v), then f is callled the k adjacent reducible edge aloring of G. Which is abbreviated by K-AVREC of G, and X^1avr(G) = max{k|k - AVRECofG} is called the adjacent reducible edge chromatic number of G. In this paper, we have proved theorems of adjacent reducible coloring of some circumstances, and adjacent reducble edge chromatic number of some join-graphs (Sn + Sn,Fn + Fn, Wn+Wn, Sn+ Fn, Sin+ Wn, Fn + Wn) is obtained.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第13期207-213,共7页
Mathematics in Practice and Theory
基金
甘肃省自然科学基金[1010RJZA076]
关键词
联图
邻点可约边染色
邻点可约边色数
join-graph
adjacent reducible edge cloring
adjacent reducible edge chromaticnumber