期刊文献+

星扇轮联图的邻点可约边染色 被引量:4

Adjacent Reducible Edge Cloring of Star Fan Wheel of Join-Graphs
原文传递
导出
摘要 对简单图G(V,E),若存在自然数κ(1≤κ≤Δ(G))和映射f:E(G)→{1,2,…,κ}使得对任意相邻两点u,v∈V(G),uv∈E(G),当d(u)=d(v)时,有C(u)=C(u),则f为G的κ-邻点可约边染色(简记为κ-AVREC of G),而x′_(aur)(G)=max{κ|κ-AVREC of G}称为G的邻点可约边染色数.其中C(u)={f(uv)|uv∈E(G)}.证明了联图在若干情况下的邻点可约边染色定理,得到了S_n+S_n,F_n+F_n,W_n+W_n,S_n+F_n,S_n+W_n和F_n+W_n的邻点可约边色数. Let G be a simple graph, k is a positive integer, f is a mapping from E(G) to {1, 2,…, k}, such that uv, uw ∈ E(G), d(u) = d(v);and c(u) = c(v), then f is callled the k adjacent reducible edge aloring of G. Which is abbreviated by K-AVREC of G, and X^1avr(G) = max{k|k - AVRECofG} is called the adjacent reducible edge chromatic number of G. In this paper, we have proved theorems of adjacent reducible coloring of some circumstances, and adjacent reducble edge chromatic number of some join-graphs (Sn + Sn,Fn + Fn, Wn+Wn, Sn+ Fn, Sin+ Wn, Fn + Wn) is obtained.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第13期207-213,共7页 Mathematics in Practice and Theory
基金 甘肃省自然科学基金[1010RJZA076]
关键词 联图 邻点可约边染色 邻点可约边色数 join-graph adjacent reducible edge cloring adjacent reducible edge chromaticnumber
  • 相关文献

参考文献1

二级参考文献1

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175

共引文献78

同被引文献17

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部