期刊文献+

大规模互联网推荐系统优化算法 被引量:1

An optimization algorithm for large-scale Internet recommender system
下载PDF
导出
摘要 推荐系统是互联网应用中的关键技术之一,该系统通过分析用户行为,用主动向用户推荐产品的方式替代被动地接受用户请求。优秀的推荐系统不仅可以提高用户体验,还能增加用户购买欲望。协同过滤算法是推荐系统中广泛应用的算法之一。在大规模网络中,传统协同过滤算法将出现极端稀疏问题,且算法效率低下。设计了一种通过对网络分割、分组的协同过滤算法,该算法的目的是将大规模网络通过一定的分割规则分割并分组,利用分治的思想,将问题分解为子问题然后求解,以优化算法性能。 Recommender system is one of the key techniques in internet applications.The system analyzes user's behavior,and recommends products initiative to replace the passive acceptance of user requests.The recommender system can improve not only the user experience but also the user's desire to buy something.Collaborative filtering algorithm is widely used in the recommender system.In a largescale network,traditional collaborative filtering algorithms have extreme sparseness problem,and thus being inefficient.A collaborative filtering algorithm is proposed,which is designed by the large-scale network segmentation rules.The algorithm uses the idea of divide and conquer algorithm,and decomposes problems into sub-problems to solve,hence reaching the optimization of algorithm.
出处 《计算机工程与科学》 CSCD 北大核心 2013年第12期107-113,共7页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61272543)
关键词 推荐系统 相似度计算 协同过滤 网络分割 recommender system similarity calculation collaborative filtering network segmentation
  • 相关文献

参考文献8

二级参考文献125

共引文献1445

同被引文献26

  • 1Bobadilla J,Ortega F,Hernando A,et al.A Balanced Memory-based Collaborative Filtering Similarity Measure[J].International Journal of Intelligent Systems,2012,27(10):939-946. 被引量:1
  • 2Choi K,Suh Y.A New Similarity Function for Selecting Neighbors for Each Target Item in Collaborative Filtering[J].Knowledge-based Systems,2013,37:146-153. 被引量:1
  • 3Guo L,Ma J,Chen Z,et al.Learning to Recommend with Social Relation Ensemble[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management.[S.l.]:ACM,2012:2599-2602. 被引量:1
  • 4Ba Q,Li X,Bai Z.Clustering Collaborative Filtering Recommendation System Based on SVD Algorithm[C]//Software Engineering and Service Science(ICSESS),2013 4th IEEE International Conference on.[S.l.]:IEEE,2013:963-967. 被引量:1
  • 5Ning Chen,Chai Xiangyang.Investigation on Hadoop-based Distributed Search Engine[J].Journal of Software Engineering,2014.8(3):127-131.. 被引量:1
  • 6Wei Kuang Lai,Chen Yiuan,Wu Tinyu.Towards a Framework for Large-scale Multimedia Data Storage and Processing on Hadoop Platform[J].The Journal of Supercomputing,2014,68(1):488-507. 被引量:1
  • 7Li Lin,Chen Xing,Xu Guandong.Suggestion for Fresh Search Queries by Mining Microblog Topics[C]//BSIC Workshop in IJCAI.[S.l.]:Springer International Publishing,2013:214-223. 被引量:1
  • 8Tang Kunhao,Zhong Luo,Li Lin,et al.Urban Tunnel Clean up the Dirty Data Based on Clara Optimization Clustering[J].Journal of Applied Sciences,2013(11):1980-1984. 被引量:1
  • 9Pham M C,Cao Y,Klamma R,et al.A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis[J].J UCS,2011,17(4):583-604. 被引量:1
  • 10Esfahani M H,Alhan F K.New Hybrid Recommendation System Based on C-Means Clustering Method[J].Information and Knowledge Technology,2013(5):145-149. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部