期刊文献+

基于领域知识的个性化推荐算法研究 被引量:34

A Collaborative Filtering Recommendation Algorithm Based on Domain Knowledge
下载PDF
导出
摘要 提出了利用领域知识进行相似度计算的协同过滤算法,使用户在评分的共同项目很少或为零的情况下也能找到最近邻进行协同推荐。实验结果表明,该算法解决了传统协同过滤算法中相似性度量方法“过严”的问题,在过滤初期显著地提高了推荐质量。 A novel method which exploring hierarchical domain knowledge to computer the user similarity is proposed. This method can find user's neighborhood and get predictions by neighbor's rating even they have no common rating items. The experiment results show that it can provide better prediction results than traditional collaborative algorithms at such condition.
作者 张丙奇
出处 《计算机工程》 CAS CSCD 北大核心 2005年第21期7-9,33,共4页 Computer Engineering
基金 国家"863"计划基金资助项目(2002AA142110)
关键词 个性化 推荐系统 协同过滤 领域知识 平均绝对误差 Personalization Recommendation system Collaborative filtering Domain knowledge MAE
  • 相关文献

参考文献4

  • 1Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating "Word of Mouth", In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems, 1995:210-217. 被引量:1
  • 2Breese J, Hecherman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proceedings of the 14^th Conference on Uncertainty in Artificial Intelligence (UAI'98),1998:43-52. 被引量:1
  • 3Ganesan P, Garcia-molina H. Hierarchical Domain Structure to Compute Similarity. ACM Transaction on System, 2003,21(1 ): 64-93. 被引量:1
  • 4Rodriguez M A, Egenhofer M J. Determining Semantic Similarity Among Entity Classes from Dilferent Ontologies. IEEE Transactions on Knowledge and Data Engineering,2003, 15(2): 442-456. 被引量:1

同被引文献213

引证文献34

二级引证文献429

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部