期刊文献+

基于图像上下文语义信息的场景分类方法 被引量:3

Scene classification based on the contextual semantic information of image
原文传递
导出
摘要 针对传统"视觉词袋模型"在进行场景分类时只利用图像的特征域,忽略其空间域中上下文语义信息的问题,提出一种基于图像上下文语义信息的场景分类方法.在传统"视觉词袋模型"的基础上,引入马尔科夫随机场模型对图像上下文语义信息进行建模,利用潜在的狄利克雷分布学习场景的主题分布,且利用支持向量机构造场景分类器.对15类场景的分类实验证明该方法能够有效提高分类精确度. A novel approach was proposed to categorize the scenes. Based on the traditional Bag of Visual words (BOV) model, the Markov Random Field (MRF) was introduced to combine the feature field and the spatial field in order to quantify the image into a set of unordered visual words. And then the Latent Dirichlet Allocation (LDA) was used to learn the topic distribution. At last, the Support Vector Ma- chine(SVM) was applied to identify a new image. The experimental results on 15 nature scenes show that the introduction of the contextual semantic information on the basis of the traditional method can enhance the classification accuracy.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期1223-1229,共7页 Journal of Sichuan University(Natural Science Edition)
基金 教育部"春晖计划"(z2011149)
关键词 场景分类 视觉词袋模型 马尔科夫随机场 潜在的狄利克雷分布 支持向量机 scene classification, bag of visual words, markov random field, LDA, SVM
  • 相关文献

参考文献18

  • 1Benmokhtar R, Huet B, Berrani S. Low-level feature fusion models for soccer scene classification [C]// Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). Hannover, Germa- ny. IEEE publisher, 2008. 被引量:1
  • 2Ngu A H H, Sheng Q Z, Huynh D, etal. Combi- ning multi-visual features for efficient indexing in a large image database[J]. The VLDB Journal-The In- ternational Journal on Very Large Data Bases, 2001, 9(4) : 279. 被引量:1
  • 3Vailaya A, Figueiredo M A T, Jain A K, et al. Im- age classification for content-based indexing [J]. IEEE Transaction Image Process, 2001, 10(1) : 117. 被引量:1
  • 4Bosch A, Zisserman A, Munoz X. Scene classifica- tion using a hybrid generative/discriminative ap- proach [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2008,30(4): 712. 被引量:1
  • 5Li F F, Persona P. A bayesian hierarchical model for learning natural scene categories [C]. USA: IEEE Computer Society Press, 2005. 被引量:1
  • 6Hofmann T. Unsupervised learning by probabilistic latent semantic analysis [J]. Journal of machine Learning, 2001, 41(2) : 177. 被引量:1
  • 7Blei D M, Ng A, Jordan M. Latent dirchlet alloca- tion [J]. Journal of Machine Learning Research, 2003, 2(3): 993. 被引量:1
  • 8Kindermann R, Snell J L. Markov random fields and their applications [M]. Providence, RI. American Mathematical Society, 1980. 被引量:1
  • 9陈俊杰,谢明,李文博,罗代升,吴晓红.马尔可夫随机场和模拟退火算法的SAR图像相干斑抑制方法[J].四川大学学报(自然科学版),2008,45(1):105-109. 被引量:8
  • 10Stan Z L. Markov random field modeling in image Analysis[M]. Germany: Springer, 2001. 被引量:1

二级参考文献19

  • 1张鹏,张桂林.马尔可夫随机场在低信噪比图像恢复中的应用[J].计算机与数字工程,2006,34(1):41-43. 被引量:1
  • 2Bosch A, Zisserman A. Scene classification using a hybrid generative/discriminative approach [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4): 712- 727. 被引量:1
  • 3Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2006, 2: 2169-2178. 被引量:1
  • 4Gokalp D, Aksoy S. Scene classification using bag-of-regions representations [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, USA: IEEE Press, 2007, 6: 1-8. 被引量:1
  • 5Nowak E. Sampling strategies for bag of features image classification [ C ]//Proceedings of Europeon Conference on Computer Vision. Berlin, Germany: Springer-Verlag, 2006, 3954 : 490-503. 被引量:1
  • 6Anna B, Zisserman A. Scene classification via pLSA [ C ]// Proceedings of Europeon Conference on Computer Vision. Berlin, Germany, Springer-Verlag, 2006, 3954: 517-530. 被引量:1
  • 7Li F F, Perona P. A bayesian hierarchical model for learning natural scene categories [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2005, 2: 524-531. 被引量:1
  • 8Blei D, Andrew Y. Latent dirichlet allocation [ J]. Journal of Machine Learning Research, 2003, 3 ( 1 ) : 993-1020. 被引量:1
  • 9Quelhas P. A thousand words in a scene[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (9) : 1575-1589. 被引量:1
  • 10Elango P K. Clustering Images Using the Latent Dirichlet Allocation Model[EB/OL]. (2005-12-08) [2009- 11-07]. http ://pages. cs. wisc. edu/- pradheep/Clust-LDA, pdf. 被引量:1

共引文献21

同被引文献74

  • 1Oliva A, Torralba A. Modeling the shape of the scene: aholistic representation of the spatial envelope[j] . Interna-tional Journal of Computer Vision, 2001,42(3): 145-175. 被引量:1
  • 2Bosch A, Munoz X, Marti R. Which is the best way toorganize/classify images by content[J]. Image and VisionComputing, 2007,25(6): 778-791. 被引量:1
  • 3Serrano N, Savakis A E,Luo J. Improved scene classifi-cation using efficient low-level features and semantic cues[J]. Pattern Recognition, 2004, 37(9) : 1773-1784. 被引量:1
  • 4Luo j , Savakis A E, Singhal A. A Bayesian network-based framework for semantic image understanding [ J ].Pattern Recognition, 2005,38(6) : 919-934. 被引量:1
  • 5Fan J , Gao Y, Luo H, et al. Statistical modeling andconceptualization of natural images [J ]. Pattern Recogni-tion, 2005, 38(6): 865-885. 被引量:1
  • 6Bosch A, Zisserman A, Munoz X. Scene classificationVia pLSA[C]. Berlin Heidelberg: Computer Vision-EC-CV, 2006: 517-530. 被引量:1
  • 7Lazebnik S, Schmid C, Ponce J. Beyond bags of fea-tures :spatial pyramid matching for recognizing naturalscene categoriest C]. Computer Vision and Pattern Rec-ognition, 2006 IEEE Computer Society Conference on.IEEE, 2006: 2169-2178. 被引量:1
  • 8Oliva A, Torralba A. Scene-centered description fromspatial envelope properties[ C]. Berlin Heidelberg: Bio-logically Motivated Computer Vision, 2002: 263-272. 被引量:1
  • 9Ess A,Mueller T,Grabner H,et al. Segmentation-based urban traffic scene understanding [ C ]. Proceed-ings 20th British Machine Vision Conference-BMVC,2009. 被引量:1
  • 10Burges C J C. A tutorial on support vector machines {orpattern recognition [ J ]. Data Mining and KnowledgeDsiscovery, 1998, 2(2) : 121-167. 被引量:1

引证文献3

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部