期刊文献+

基于压缩感知的荧光显微多光谱成像 被引量:11

Multispectral Fluorescence Microscopic Imaging Based on Compressive Sensing
原文传递
导出
摘要 将压缩感知(CS)理论应用于荧光显微成像,设计搭建了一套新型的显微成像系统。使用液晶光阀实现待测图像到随机光斑的线性投影,以单点探测进行荧光信号采集,结合CS信号重构理论得到样品图像。采样数远低于Nyquist-Shannon定理要求的次数,成像过程无需扫描,系统结构简单。相对于传统的更换滤光片和光栅扫描成像的光谱成像模式,该系统仅需使用光谱仪采集信号、对光谱分波段计算即可得到荧光样品的多光谱图像。荧光显微成像过程中存在荧光衰减的影响,实验中对数据进行强度归一化预处理,结果表明该处理方法有效消除了荧光衰减对图像重构的影响。 Compressive sensing (CS) theory is used in fluorescence microscopy imaging and a new microscopic imaging system is designed and implemented. A liquid crystal light valve is employed to calculate the linear projection of an image onto pseudorandom patterns. Fluorescence is collected on a point detector. Images of the samples are acquired combined with the reconstruction theory of CS. The number of samples is smaller than that imposed by the Nyquist-Shannon theorem. The system hardware is simple as scanning is unnecessary during the imaging process. Compared with the traditional spectral imaging modalities, such as using optical filter and raster scanning, this system only needs a spectrometer to acquire signal and then multispectral images are reconstructed from measurements corresponding to a set of sub-bands. As the fluorescence microscopy imaging suffers fluorescence decay during imaging process, in this experiment, data preprocessing such as intensity normalization is applied and the results indicate that the influence of fluorescence decay on reconstruction ~s eliminated effectively with this processing method.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第12期118-122,共5页 Chinese Journal of Lasers
基金 国家自然科学基金(61205160) 浙江省钱江人才计划基金(2011R10010) 教育部博士点基金(20110101120061 20120101130006)
关键词 显微 光谱成像 压缩感知 强度归一化 microscopy spectral imaging compressive sensing intensity normalization
  • 相关文献

参考文献18

  • 1E Cand~s, J Romberg, T Tao. Robust uncertainty principles:exact signal reconstruction trom highly incomplete trequency information[J]. 1EEE Trans Information Theory, 2006, 52(2):489-509. 被引量:1
  • 2E Candes, T Tao. Near optimal signa1, recovery ftom random projections and universal encoding strategies [J]. IEEE Trans Information Theory, 2006, 52(12): 5406-5425. 被引量:1
  • 3D Donoho. Compressed sensing [J]. IEEE Trans Information Theory, 2006. 52(4): 1289-1306. 被引量:1
  • 4J Yoo, S Becker, M Monge, el al. Design and implementation of a fully integrated compressed-sensing signal acquisition system [C]. IEEE Int Conf Acoustics, Speech and Signal Processing, 2012. 5325-5328. 被引量:1
  • 5M Mishali, Y C Eldar, O Dounaevsky, et al. Xampling: analog to digital at sub-Nyquist rates[J]. IET Cir Dev & Systems, 2011, 5(1): 8-20. 被引量:1
  • 6J Bolin, J L Starck. R Ottensamer. Compressed sensing in astronomy [J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(5): 718-726. 被引量:1
  • 7吴迎春,吴学成,王智化,陈玲红,周昊,岑可法.压缩感知重建数字同轴全息[J].光学学报,2011,31(11):76-81. 被引量:21
  • 8M I.ustig. D Donoho. J M Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging [ J ]. MagneticResonance in Medicine, 2007, 58(6): 1182-1195. 被引量:1
  • 9J Trzaske, A Manduca. Highly undersampled magnetic resonance image reconstruction via homotopic go minimization[J]. IEEE Trans Medical Imaging, 2009, 28(1): 106-121. 被引量:1
  • 10V Studer, J Bolin, M Chahid. Compressive fluorescence microscopy for biological and hyperspeereal imaging [ J ]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 109(26) : 1679- 1687. 被引量:1

二级参考文献42

  • 1Emmanuel Candès,Justin Romberg,Terence Tao.Robust uncertainty principles:exact signal reconstruction from highlyincomplete frequency information[J].IEEE Trans.Inform.Theory,2006,52(2):489-509. 被引量:1
  • 2David Donoho.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52(4):1289-1306. 被引量:1
  • 3John Wright,Allen Yang,Arvind Ganesh et al..Robust face recognition via sparse representation[J].IEEE Trans.Pattern Anal.,2009,31(2):210-227. 被引量:1
  • 4Mark Davenport,Petros Boufounos,Michael Wakin et al..Signal processing with compressive measurements[J].IEEEJ-STSP,2010,4(2):445-460. 被引量:1
  • 5Kush R.Varshney,Müjdatetin,John W.Fisher et al..Sparse representation in structured dictionaries with applicationto synthetic aperture radar[J].IEEE Trans.Signal Proc.,2008,56(8):3548-3561. 被引量:1
  • 6L.Baboulaz,P.L.Dragotti.Exact feature extraction using finite rate of innovation principles with an application to imagesuper-resolution[J].IEEE Trans.Image Proc.,2009,18(2):281-298. 被引量:1
  • 7W.Bajwa,J.Haupt,A.Sayeed et al..Joint source-channel communication for distributed estimation in sensor networks[J].IEEE Trans.Inform.Theory,2007,53(10):3629-3653. 被引量:1
  • 8Michael Lustig,David Donoho,John M.Pauly.Sparse MRI:the application of compressed sensing for rapid MR imaging[J].Magn.Reson.Med.,2007,58(6):1182-1195. 被引量:1
  • 9Mojdeh Mohtashemi,Haley Smith,Felicia Sutton et al..Sparse sensing DNA microarray-based biosensor:is it feasible?[C].IEEE Sensors Applications Sympsium(SAS),2010,127-130. 被引量:1
  • 10J.Laska,S.Kirolos,M.Duarte et al..Theory and implementation of an analog to information converter using randomdemodulation[C].IEEE International sympsium on Circuits and System(ISCAS),2007,1959-1962. 被引量:1

共引文献79

同被引文献150

引证文献11

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部