期刊文献+

基于时变医学先验信息的约束成像及图像配准方法 被引量:1

A Constrained Imaging and Registration Scheme Based on Time-varying Anatomical Priors
下载PDF
导出
摘要 在磁共振动态成像和神经成像应用中,由于医学先验信息的时变性,使得传统的约束成像法产生成像误差,且图像配准时间较长。该文提出以快速获取低分辨率图像作为参考图像的约束成像策略,以两帧图像的互信息量结合曲率匹配的图像配准方法。该方法通过对比时序图像相邻帧配准前后的互信息量更新参考图像、检测配准结果。实验结果表明,该方法配准精度高,计算量低,可实时动态成像。 Due to the time-varying anatomical information in the applications of magnetic resonance dynamic imaging and functional neuroimaging, the traditional constrained imaging suffers the imaging error and the long registration time. In this paper an imaging strategy is proposed to reconstruct rapidly a low-resolution image as the reference image, and make the image registration based on Mutual Information (MI) metric of two images combined with landmark curvature mapping. The proposed method calculates and compares the MI of adjacent frames of temporal image sequences before and after registration to decide whether to update reference images, as well as to verify the registration results. Experimental results show that the proposed method achieves high registration precision and reduces dramatically the computational cost, and thus it can be applied to real-time dynamic imaging.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第12期2942-2947,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(51105316) 陕西省科技计划项目(2009K09-16)资助课题
关键词 图像配准 约束成像 互信息量 曲率匹配 医学先验信息 Image registration Constrained imaging Mutual Information (MI) Curvature mapping Anatomical prior information
  • 相关文献

参考文献16

  • 1邓梁,史仪凯,张均田.基于光学时轴校准MRI数据重建的高时空分辨率神经成像[J].神经药理学报,2011(3):47-54. 被引量:2
  • 2Constantinides C D, Weiss R G, Lee R, et al .. Restoration of low resolution metabolic images with a priori anatomic information: 23Na MRl in myocardial infarction'J]. Magnetic Resonance Imaging, 2000, 18(4): 461-47l. 被引量:1
  • 3Denney T S and Reeves S J. Bayesian image reconstruction from Fourier domain samples using prior edge information[J]. Journal of Electronic Imaging, 2005, 14(4): 043009. 被引量:1
  • 4Gao Y, Strakowski S M, Reeves S J, et al.. Fast spectroscopic imaging using online optimal sparse Iv-space acquisition and projections onto convex sets reconstruction[J]. Magnetic Resonance in Medicine, 2006, 55(6): 1265-127l. 被引量:1
  • 5Bao Y and Maudsley A A. Improved reconstruction for MR spectroscopic imaging[J]. IEEE Transactions on Medical Imaging, 2007, 26(5): 686-695. 被引量:1
  • 6Haldar J P, Hernando D, Song S K, et al.. Anatomically constrained reconstruction from noisy data[J]. Magnetic Resonance in Medicine, 2008, 59(4): 810-818. 被引量:1
  • 7Dame A and Marchand E. Second-order optimization of mutual information for real-time image rcgistration[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4190-4203. 被引量:1
  • 8Lu G, Van J, Kou Y, et al .. Image registration based on criteria of feature point pair mutual information[J]. IET Image Processing, 2012, 5(6): 560-566. 被引量:1
  • 9谢文彪,樊绍胜,费洪晓,樊晓平.基于互信息梯度优化计算的信息判别特征提取[J].电子与信息学报,2009,31(12):2975-2979. 被引量:8
  • 10杨帆,张汗灵.蚁群算法和Powell法结合的多分辨率三维图像配准[J].电子与信息学报,2007,29(3):622-625. 被引量:18

二级参考文献77

  • 1王文胜,陈伏兵,杨静宇.一种基于奇异值分解的特征抽取方法[J].电子与信息学报,2005,27(2):294-297. 被引量:10
  • 2陈刚,陈莘萌.一种考虑类别信息的音频特征提取方法[J].计算机研究与发展,2006,43(11):1959-1964. 被引量:4
  • 3Loog M, Duin R P W, and Haeb-Umbach R. Multielass linear dimension reduction by weighted pairwise Fisher criteria [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(7): 762-766,. 被引量:1
  • 4Loog M and Duin R P W. Linear dimensionality reduction via a heteroscedastic extension of LDA: The chernoff criterion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 732-739. 被引量:1
  • 5Hild II K E, Erdogmus D, and Torkkola K. Feature extraction using information-theoretic learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1385-1392. 被引量:1
  • 6Padmanabhan M and Dharanipragada S. Maximizing information content in feature extraction [J]. IEEE Transactions on Speech Audio Processing, 2005, 13(4): 512-519. 被引量:1
  • 7Leiva-Murillo J M and Artes-Rodrfguez A. Maximization of mutual information for supervised linear feature extraction [J]. IEEE Transactions on Neural Networks, 2007, 18(5): 1433-1440. 被引量:1
  • 8Grosse-Wentrup M and Buss M. Multicla.ss common spatial patterns and information theoretic feature extraction [J]. IEEE Transactions on Biomedical Engineering, 2008, 55(8): 1991-2000. 被引量:1
  • 9Fukunaga K. Introduction to Statistical Pattern Recognition [M]. New York: Academic Press, 1990: Appendix A (Derivatives of Matrices). 被引量:1
  • 10Rasmussen C E and Williams C K I. Gaussian Processes for Machine Learning [M]. Massachusetts. The MIT Press, 2006: 171-188. 被引量:1

共引文献25

同被引文献2

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部