期刊文献+

采用结构自适应窗的非局部均值图像去噪算法 被引量:7

A Non-Local Means Algorithm for Image Denoising Using Structure Adaptive Window
下载PDF
导出
摘要 针对图像去噪处理中的非局部均值(NLM)算法相似性度量结果不够准确的问题,提出了一种采用结构自适应窗的非局部均值图像去噪(SAW-NLM)算法。首先利用从含噪图像中提取的初始素描图将含噪图像划分为结构区和非结构区,然后对这两部分区域分别采用基于结构方向的自适应窗和各向同性窗来搜索相似图像块,最后利用这些相似图像块得到当前待估计像素的去噪结果。为了抑制伪纹理现象,在估计过程中采用了块估计的方式。自适应窗有效结合了图像的结构方向和灰度信息,因此能够更准确度量图像块的相似性。实验结果表明:SAW-NLM算法具有更优的边缘保持和平滑效果,与传统NLM算法相比,峰值信噪比最大可提高1.1dB,图像结构相似度也提高了4.6。 A structure adaptive window based non-local means (SAW-NLM) algorithm for image denoising is proposed to solve the problem that the results of the similarity measurement are not accurate in the non-local means (NLM) method. The proposed algorithm divides a noisy image into two parts, structural area and non-structural area, by using the primal sketch map that is extracted from the noisy image. Then, similar samples are respectively searched in these two parts using structure direction based adaptive window and isotropic window. Finally, the denoising result is estimated from these samples. Moreover, the window-wise method is employed in the estimation of the interest to suppress the pseudo texture phenomenon. Since the structure direction and the gray information are jointly used in the adaptive window, the similarity can be more accurately measured. Experimental results show that the SAW-NLM algorithm has advantages in the edge preservation and smooth effects. Comparisons with the traditional NLM algorithm show that SAW-NLM method improves the peak signal-to-noise by 1.1 dB and the structural similarity index by 4.6.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第12期71-76,共6页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展计划资助项目(2013CB329402) 中央高校基本科研业务费专项资金资助项目(K5051203002 K5051203007) 国家自然科学基金资助项目(61072106 61173090)
关键词 图像去噪 度量 结构自适应窗 估计 非局部均值 image denoising~ measurement~ structure adaptive window~ estimation nonlocalmeans
  • 相关文献

参考文献4

二级参考文献27

  • 1Astola J,Haavisto P,Neuvo Y.Vector median filters[J].Proc IEEE,1990,78(4):678-689. 被引量:1
  • 2Trahanias P,Venetsanopoulos A.Vector directional filters—A newclass of multichannel image processing filters[J].IEEE Trans Image Process,1993,2(4):528-534. 被引量:1
  • 3R Lukac,Adaptive color image filtering based on center-weighted vector directional filters[J].Multidimensional Syst Signal Processing,2004,15(2):169-196. 被引量:1
  • 4C Tomasi ,R Manduchi.Bilateral filtering for gray and color images .Proceedings of the 6th International Conference on Computer Vision .New Delhi:IEEE Computer Society,1998.839-846. 被引量:1
  • 5Wen-Chung Kao,Ying-Ju Chen.Mltistage bilateral noise filtering and edge detection for color image enhancement[J].IEEE Trans Consumer Electronics,2005,51(4):1346-1351. 被引量:1
  • 6F Russo ,A Lazzari.Color edge detection in presence of Gaussian noise using nonlinear prefiltering[J].IEEE Trans Instrumentation and Measurement,2005,54(1):352 -358. 被引量:1
  • 7Pei S C,Cheng C M.Color image processing by using binaryquaternion moment-perserving thresholding technique[J].IEEE Trans Imaging Processing,1999,8(5):614-628. 被引量:1
  • 8Trahanias P,Venetsanopoulos A N.Color edge detection using vector statistics .IEEE Trans Image Processing,1993,2(4):259-264. 被引量:1
  • 9Jian Fan.A local orientation coherency weighted color gradient for edge detection .2005 International Conference on Image Processing .Genova:IEEE,2006.Ⅲ-1132-5. 被引量:1
  • 10Dony R D,Wesolkowski S.Edge detection on color images us-ing RGB vector angle .Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering .Edmon-ton,Canada:IEEE,1999.289-292. 被引量:1

共引文献104

同被引文献86

  • 1汪茂海,郭航,马重芳,贾杰林,刘璿,叶芳,俞坚.直接甲醇燃料电池动态性能的研究[J].中国电机工程学报,2005,25(6):161-165. 被引量:12
  • 2陈浩元.科技书刊标准化18讲[M].北京:北京师范大学出版社,2000.59. 被引量:133
  • 3科技部,财政部.国家重点实验室建设与运行管理办法[EB/OL].(2008-09-11)[2012-01-16].http://www.most.gov.cn/tztg/200809/P020080910598387340007.doe. 被引量:4
  • 4黄巧冰.内皮细胞屏障与烧伤后血管通透性的关系及机制[J].中华烧伤杂志,2007,23(5):324-326. 被引量:14
  • 5刘启跃,王文健,周仲荣.高速与重载铁路钢轨损伤及预防技术差异研究[J].润滑与密封,2007,32(11):11-14. 被引量:47
  • 6Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the 2005 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 60-65. 被引量:1
  • 7Easley G R, Labate D, Colonna F. Shearlet based total vari- ation for denoising. IEEE :l:'ansactions on hnage Processing, 2009, 16(2): 260-268. 被引量:1
  • 8Huang D A, Kang L W, Wang Y C, Lin C W. Self-learning based image decomposition with applications to single image denoising. IEEE Ti'ansactions on Multimedia, 2014, 16(1): 83-93. 被引量:1
  • 9Mahmoudi M, Sapiro G. Fast image and video denoising via non-locM means of similar neighborhoods. IEEE Signal Pro- cessing Lett:,rs, 2005, 12(12): 839-842. 被引量:1
  • 10Yan R M, Shao L, Cvetkovic S D, Klijn J. Improved nonloca.I means based on pre-classification and invariant block match- ing. Journal of Display Technology, 2012, 8(4): 212-218. 被引量:1

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部