摘要
利用积分变换和传递矩阵的方法推导了多层粘弹半空间轴对称问题的理论解,引入 F.Durbin的方法实现 Laplace逆变换,通过实例计算路表弯沉表明初始时段所得结果与弹性解基本一致,随着时间的推移,多层粘弹体系表面弯沉增大,这种现象说明随时间的推移,材料的粘性起到更大的作用,与实际情况相附。本文的方法可以很容易推广到多层粘弹体系的动力学问题之中。
By means of transfer matrix and integral transformation, the solution for solving axisymmetrical problems in multilayered viscoelastic half space is derived, F.Durbin's numerical inversion transform of Laplace is used. An example shows that deflection in the beginning intervals is in good agreement with that in elastic solution, with time passing, the surface deflection in multilayered viscoelastic body increases,which explains that the viscidity of material plays greater part. The solution in this paper can easily be used to solve dynamic question of multilayered viscoelastic half space.
出处
《哈尔滨建筑大学学报》
2000年第6期124-128,共5页
Journal of Harbin University of Civil Engineering and Architecture
关键词
沥青路面
多层粘弹体系
积分变换
传递矩阵
asphalt pavement
multilayered viscoelastic body
integral transformation
transfer matrix
road surface deflection
viscoelastic solution
elastic solution
numerical solution