期刊文献+

数据挖掘与数据库优化技术在煤矿安全监管系统中的应用 被引量:8

Application of Data Mining and Database Optimization Techniques in Coal Mine Safety Supervision System
下载PDF
导出
摘要 首先论述了数据挖掘与数据库优化技术的内涵,具体探讨了数据挖掘与数据库优化技术在煤矿安全监管系统中的应用,最后建立了基于数据挖掘与数据库优化技术的矿井运行状态监控总体方案,取得了比较好的效果。 The paper first discusses the connotation of the data mining and database optimization techniques, specifically discusses the application of the data mining and database optimization techniques in the coal mine safety supervision system, and finally establishes the mine running state-based data mining and database optimization techniques monitor overall program, to obtain better results.
作者 张立新
出处 《煤炭技术》 CAS 北大核心 2013年第11期106-107,共2页 Coal Technology
关键词 数据挖掘 数据库优化 煤矿 安全监管 data mining database optimization mine safety supervision
  • 相关文献

参考文献7

二级参考文献27

  • 1熊忠阳,孙思,张玉芳,王秀琼.一种基于划分的不同参数值的DBSCAN算法[J].计算机工程与设计,2005,26(9):2319-2321. 被引量:16
  • 2文福拴,邱家驹,韩祯祥.只利用断路器信息诊断电力系统故障的高级遗传算法[J].电工技术学报,1996,11(2):58-64. 被引量:38
  • 3[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000. 被引量:1
  • 4[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998. 被引量:1
  • 5[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231. 被引量:1
  • 6[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20. 被引量:1
  • 7HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:149
  • 8VALE Z A, RAMOS C. Temporal Reasoning Methodologies Used in AI Applications for Power System Control Centers. In: Proceedings of 1996 International Conference on Intelligent Systems Applications to Power System (ISAP'96 ). Orlando(FL,USA): 1996. 357-361. 被引量:1
  • 9SRIKANT R, AGRAWAL R. Mining Quantitative Association Rules in Large Relational Tables. In Proceedings of 1996 ACM-SIGMOD International ConIerenc on Management of Data(SIGMOD'96). Montreal(Canada):1996.1-12. 被引量:1
  • 10HAN J, PEI J, YIN Y. Ming Frequent Patterns Without Candidate Generation. In: Proc of 2000 ACM SIGMOD Int Conf on Management of Data. Dallas(TX,USA): 2000. 1-12. 被引量:1

共引文献110

同被引文献46

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部