期刊文献+

基于遗传算法的轻度混合动力汽车动力传动系参数优化 被引量:4

Powertrain Parametric Optimization of Mild Hybrid Electric Vehicle Based on Genetic Algorithm
下载PDF
导出
摘要 在研究某ISG型轻度混合动力汽车(Mild Hybrid Electric Vehicle,MHV)控制策略的基础上,选择对动力性和经济性有较大影响的主减速器传动比、变速器各挡传动比以及变速器换挡规律为优化参数,以加速时间和等效燃油消耗为优化目标,通过GT-SUITEMP建立整车仿真模型。采用带精英策略的快速非支配排序遗传算法(NSGA-II),基于mode FRONTIER(MF)建立了多目标优化模型。通过联合仿真分析,得到了Pareto最优解,与优化前相比,加速时间减少了3.5%,等效燃油消耗降低了9.4%。 Based on the study of the control strategy of integrated starter/generator mild hybrid electric vehicle (MHV), the vehicle simulation model was established via GT-SUITEMP. Aiming at optimizing acceleration time and equivalent fuel consumption, the final drive ratio, each gear ratio and gear shifting rule were selected as optimization parameters, which have great influence on power performance and fuel economy. Based on the mode FRONTIER (MF), multi-objective optimization model was set up by adopting the fast and elitist non-dominated sorting generic algorithm (NSGA-II) and the Pareto optimal solutions could be obtained through co-simulation analysis. Compared with the original vehicle, acceleration time is reduced by 3.5% and the equivalent fuel consumption is reduced by 9.4% in the final solution.
作者 杜子学 查雷
出处 《汽车工程学报》 2013年第6期433-439,共7页 Chinese Journal of Automotive Engineering
基金 重庆市科技计划项目(CSTC2011GGC250)
关键词 轻度混合动力汽车(MHV) 动力传动系 遗传算法 多目标优化 mild hybrid electric vehicle (MHV) powertrain system genetic algorithm multi-objective optimization
  • 相关文献

参考文献9

二级参考文献27

共引文献484

同被引文献28

  • 1杨伟斌,吴光强,秦大同,鞠丽娟.混合动力汽车传动系优化匹配及性能仿真[J].同济大学学报(自然科学版),2006,34(7):937-942. 被引量:23
  • 2余志生.汽车理论[M].北京:机械工业出版社,2010:140-150. 被引量:32
  • 3EhsaniM,高义民,EmadiA.现代电动汽车、混合动力电动汽车和燃料电池车:基本原理、理论和设计[M].北京:机械工业出版社,2010. 被引量:3
  • 4GAO B Z, LIANG Q. Gear ratio optimization and shift control of 2-speed I-AMT in electric vehicle [ J ]. Me- chanical Systems and Signal Processing ,2015,51 ( 1 ) : 615 -631. 被引量:1
  • 5LI L, ZHANG Y H. Hybrid genetic algorithm - based optimization of powertrain and control parameters ofplug-in hybrid electric bus[J]. Journal of the Franklin Institute, 2014,10 (6) : 1 - 23. 被引量:1
  • 6WU L H, WANG Y N. Multi-objective optimization of HEV fuel economy and emissions using the self-adaptive differential evolution algorithm [ J ]. IEEE Transactions on Vehicular Technology ,2011,60(6) :2458 - 2470. 被引量:1
  • 7DED K, PRATAP A, AGARWAL S. A fast and elie- ist multi-objective genetic algorithm: NSGA - II[ J ]. IEEE Transactions on Evolutionary Compotation, 2002,6(2) : 182 - 197. 被引量:1
  • 8SUN H. Multi-objective optimization for hydraulic hy- brid vehicle based on adaptive simulated annealing ge- netic Mgorithm[J ]. Engineering Applications of Arti- ficial Intelligence ,2010,23 ( 1 ) :23 - 27. 被引量:1
  • 9丁能根,连小珉,蒋孝煜.汽车传动参数的模糊优化设计[J].清华大学学报(自然科学版),1997,37(11):123-126. 被引量:7
  • 10刘涛,郭源科.基于复合形法的汽车动力传动系参数优化匹配分析[J].机械设计与制造,2008(7):201-203. 被引量:9

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部