期刊文献+

基于哈夫曼编码的稀疏矩阵的存储与计算 被引量:3

Storage and computation of sparse matrix based on Huffman coding
下载PDF
导出
摘要 在科学计算中,稀疏矩阵与向量乘积SMVP是一个十分重要的计算内核,它的效率主要是由稀疏矩阵的存储模式及相应的SMVP算法所决定。为了在稀疏矩阵的存储模式方面获得较好的性能,在哈夫曼压缩编码的基础上,对现有的分块压缩行存储BCRS方法进行了改进,在一定程度上减少了冗余零元素的存储,并且给出了与新的BCRS方法相对应的SMVP算法。理论分析和数据实验表明,基于哈夫曼压缩编码的BCRS方法在数据复杂度方面优于原始的两种BCRS方法。 In scientific kernel, and its efficien rithm. For the sake of cy ob computing, Sparse Matrix Vector Product (SMVP) is an important calculation is mainly determined by the storage model and the corresponding SMVP algo- taining better performance in the storage model of sparse matrix, based on the Huffman coding, we optimize the BCRS(Block Compressed Row Storage) method so as to reduce the storage of redundant zeros to some extent. And propose the corresponding SMVP algorithm. Theoreti- cal analysis and experiments show that the new Huffman coding based BCRS method outperforms the two traditional BCRS methods in data complexity.
出处 《计算机工程与科学》 CSCD 北大核心 2013年第11期134-138,共5页 Computer Engineering & Science
关键词 哈夫曼编码 分块压缩行存储 稀疏矩阵向量乘积 Huffman coding block compressed row storage sparse matrix vector product
  • 相关文献

参考文献2

二级参考文献20

  • 1杨继华,严国萍.基于嵌入式Linux系统的JPEG压缩算法实现[J].微机发展,2005,15(3):7-10. 被引量:6
  • 2李伟生,李域,王涛.一种不用建造Huffman树的高效Huffman编码算法[J].中国图象图形学报(A辑),2005,10(3):382-387. 被引量:15
  • 3袁伟,张云泉,孙家昶,李玉成.国产万亿次机群系统NPB性能测试分析[J].计算机研究与发展,2005,42(6):1079-1084. 被引量:13
  • 4Vuduc Wilson.Automatic Performance of Sparse Matrix Kernels[D].Berkeley,CA:University of California,2003. 被引量:1
  • 5Im Eun Jin,Yelick Katherine.Optimizing sparse matrix computations for register reuse in SPARSITY[G] //LNCS 2073,Proc of the Int Conf on Computational Science.Berlin,Springer,2001,127-136. 被引量:1
  • 6Im Eun Jin,Yelick Katherine,Vudue Wilson.Sparsity,Optimization framework for fparse matrix kernels[J].International Journal of High Performance Computing Applications,2004,18(1):135-158. 被引量:1
  • 7Vuduc Wilson,Demmel James,Yelick Katherine,et al.Performance optimizarions and bounds for sparse matrixvector multiply[C] //Proc of Supercomputing.Los Alamitos,CA:IEEE Computer Society,2002= 1-35. 被引量:1
  • 8Vuduc Wilson,Demmel James,Bilmes Jeff.Statistical models for empirical search-based performance tuning[J].International Journal of High Performance Computing Applications,2004,18(1):65-94. 被引量:1
  • 9Demmel James,Yelick Katherine.Berkeley Benchmarking and OPtimization Project[OL].2006 [2007-11-20],http:// bebop.cs.berkeley.edu/. 被引量:1
  • 10Voduc Wilson,Demmel James,Yelick Katherine.OSKI,A library of automatically tuned sparse matrix kernels[C] //Proc of SciDAC 2005:Journal of Physics,Conference Series.Philadelphia,PA:IOP,2005:521-530. 被引量:1

共引文献17

同被引文献32

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部