摘要
在二维情况下,针对配点型无网格粒子法中复杂边界区域的离散困难问题进行了系统的研究,提出了一套高精度均布离散方法。采用将二维问题降阶为一维问题的思路,先对边界进行离散并对内部进行填充,再利用粒子的不可压缩模型和自适应性质对预离散结果进行调整,以实现均匀离散。分别对直线元素和曲线元素几何图形的离散过程进行分类研究,给出了翼型等复杂曲边区域的粒子布置。结合算例对角点附近粒子间距过近的问题进行分析,并给出了一种解决方案。结果分析表明,该方法在精确表达复杂形状的基础上实现了粒子均匀离散,大幅提高了布置效率和工程应用价值,为解决三维复杂问题提供了研究基础。
A uniform distributed discretization method with high-precision was proposed to solve the discretization problem of 2-dimensional complex geometrical area for particle collocation methods.With dimensionality reduction,the boundary region is discretized and the inner part is filled first,and the incompressible model as well as self-adaptivity is employed to unify the discretization.Moreover,the discretization process of geometrical shapes concerning straight lines and curved lines were analyzed,respectively,and the particle distribution in the complex curved region like airfoil was presented.A solution was proposed to the crowded problem of particles near the angular point.The results show that the uniform distributed discretization method can not only reflect the curved shape accurately but also meet the requirement of distribution uniformity,enhancing the arrangement efficiency and value of engineering application.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2013年第11期120-126,共7页
Journal of Xi'an Jiaotong University
基金
国家自然科学(51106125
51236006)
中央高校基本科研业务费专项资金资助项目
关键词
无网格法
移动粒子半隐式法
离散方法
自适应
meshless method
moving particle semi-implicit method
discretization
self-adaptivity