摘要
Hausdorff距离是计算几何中的重要概念之一,由于Hausdorff距离是一个极大极小距离,所以我们可以根据两个物体之间的Hausdorff距离来测量它们的相似或者不匹配程度.Hausdorff距离在计算机图形学研究、计算机辅助几何设计、模式识别、图像处理、地形辅助导航系统和运动物体视觉分析中得到广泛应用.前人有关Hausdorff距离的工作基本上都是在参数曲线曲面的范围内解决的.由于代数曲线的特殊性,一般很难进行参数化导致代数曲线的Hausdorff距离计算问题一直未得到解决.笔者借助于区间算术和细分算法针对代数曲线之间的Hausdorff距离计算问题提出了一种新的解决方法.
Hausdorff distance is one of the most important computational geometry concepts. Hausdorff distance is a max-rain distance that measures the extent to which two objects are similar or different to one another. It is applied widely in computer graphics, computer aided geometry design, pattern recognition, image processing, terrain aided navigation system and moving objects visual analysis. Previous works about Hausdorff distance are focused on parametric curves and surfaces. Because of the special property of algebra curves which is very hard to parameterize, the computation of Hausdorff distance between two algebraic curves has not yet been solved. Based on interval arithmetic and subdivision algorithm a new method is given to compute the Hausdorff distance between two algebraic curves.
出处
《浙江工业大学学报》
CAS
2013年第5期574-577,共4页
Journal of Zhejiang University of Technology
基金
国家自然科学基金资助项目(61272309
61070135)