摘要
为了提高大规模散乱点云重建的效率和精度,提出了一种基于微分流形的NURBS曲面重建算法:首先依据包围盒中的点云主曲率的Hausdorff距离提取特征点,在保证精度的前提下最大限度保留点云拓扑特征;其次在NURBS曲面重建算法中引入微分流形,使用测地线距离来构造曲面的基函数,从而实现了对曲面顶点的自由控制;最后归一化基函数得到单位分解,复合单位分解得到完整曲面模型.实验结果表明,该算法在大规模点云数据的重建中优势明显,且达到了效率和精度的均衡.
To improve efficiency and precision of large-scale scattered data reconstruction,a new NURBS surface reconstruction algorithm based on differential manifolds is presented proposed.Firstly,the feature-points are extracted according to the Hausdorff distance of main curvature of the point clouds.Topology characteristics of the point clouds are retained to the largest extent.Secondly,differential manifolds are introduced into NURBS surface reconstruction algorithm,and geodesic distance is used to construct the surface basis function to achieve finer control of the surface vertex.Finally,get the unit decomposition by normalizing basis function,and the complete surface model is obtained by merging unit decomposition.Experimental results show that the algorithm has a significant advantage in large-scale point cloud data reconstruction,and reaches equilibrium of efficiency and precision.
作者
王芳
WANG Fang(Chongqing Business Vocational College,Chongqing 401331,China)
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2018年第7期84-90,共7页
Journal of Southwest China Normal University(Natural Science Edition)
基金
重庆市高等教育教学改革研究项目(153299)
重庆市高职院校信息化建设现状分析及改革研究项目(2016XJKTZD6)