期刊文献+

基于外部特征信息的番茄果实质量预测模型 被引量:3

Prediction model of tomato-mass based on external characteristic information
下载PDF
导出
摘要 为实现番茄果实质量的预测,提出一种应用计算机视觉技术对番茄果实质量进行自动识别的方法。采用Matlab平台构建算法,利用数学形态运算及图像局部性质运算等构成的识别算法,对番茄样本图像进行预处理,提取番茄图像投影面积、轮廓周长、最大内接圆直径和最小外接圆直径外部特征参数,分别建立番茄果实质量与4个特征参数之间的一元线性、二阶多项式、幂指和多元线性预测模型。试验结果显示:采用多元线性预测模型预测结果最佳,其决定系数为0.926 7,标准差为4.32;利用检验样本对预测模型进行验证,预测果实质量与实际果实质量的绝对误差均值为3.260g,相对误差均值为1.535%。研究结果表明,基于计算机视觉技术外部特征信息的番茄果实质量预测方法是可行的。 In order to classify tomatoes nondestructively, this paper put forward method, an image technology to predict tomato weight automatically. The algorithm was based on Matlab platform, using mathematical morphological operation and image local property operation to establish identification algo- rithm for the tomato. Linear model, second order polynomial model, power model were established through analyzing the relations between tomato external parameters and weight. Weight prediction mod- el was established through regression analysis of the external characteristics. The experiment results showed that the weight was highly related to its area, perimeter, maximum inscribed circle diameter and minimum circumscribed circle diameter. Test results showed that the multivariate linear prediction model was the best. Its determination coefficient (R2) was 0. 926 7, the standard deviation (SE) was 4. 32. Its mean relative error was 1. 535%, and the mean absolute error was 3. 260 g. The experiment results show that the program can quickly predict tomato weight through tomato external features.
出处 《华中农业大学学报》 CAS CSCD 北大核心 2013年第6期144-148,共5页 Journal of Huazhong Agricultural University
基金 湖北省科技厅研究与开发自主项目(2009BB013)
关键词 番茄 外部特征 计算机视觉 预测模型 tomato external characteristic computer vision prediction model
  • 相关文献

参考文献13

二级参考文献67

共引文献285

同被引文献52

  • 1蔡健荣,汤明杰,吕强,赵杰文,陈全胜.基于siPLS的猕猴桃糖度近红外光谱检测[J].食品科学,2009,30(4):250-253. 被引量:18
  • 2赵杰文,刘木华,杨国彬.基于HIS颜色特征的田间成熟番茄识别技术[J].农业机械学报,2004,35(5):122-124. 被引量:73
  • 3王树文,张长利,房俊龙.基于计算机视觉的番茄损伤自动检测与分类研究[J].农业工程学报,2005,21(8):98-101. 被引量:32
  • 4杨勇,刘木华,邹小莲,等.基于高光谱图像技术的猕猴桃硬度品质检测[c]//中国农业机械学会.中国农业机械学会2008年学术年会论文集:走中国特色农业机械化道路(下册).北京,2008-09-01:1005-1008. 被引量:2
  • 5LEIVA-VALENZUELA G A, AGUILERA J M. Automatic detection of orientation and diseases in blueberries using image analysis to improve their postharvest storage quality[J]. Food Control, 2013(33): 166-173. 被引量:1
  • 6SILVIA MATIACEVICH, PATRICIA SILVA, JAVIER. ENRIONE, et al. Quality assessment of blueberries by computer visionJJ]. Procedia Food Science, 2011(1): 421- 425. 被引量:1
  • 7ZUNIGA A, MARCO MORA, MIGUEL OYARCE, et al. Grape maturity estimation based on seed images and neural networks[J]. Engineering Applications of Artificial Intelligence, 2014(35): 95-104. 被引量:1
  • 8RODR~GUEZ-pLrLIDO F J, LUIS GOMEZ-ROBLEDO, MANUEL MELGOSA, et al. Ripeness estimation of grape berries and seeds by image analysis[J]. Computers and Electronics in Agriculture, 2012(82): 128-133. 被引量:1
  • 9LIMING X, ZHAO YANCHAO. Automated strawberry grading system based on image processing[J]. Computer and Electronics in Agriculture, 2010(71): 32-39. 被引量:1
  • 10SUGIYAMA T, JUNICHI SUGIYAMA, MIZUKI TSUTA, et al. NIR spectral imaging with discriminant analysis for detecting foreign materials among blueberries[J]. Journal of Food Engineering, 2010(101): 244-252. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部