期刊文献+

面向Folksonomy的用户兴趣相似性度量方法 被引量:5

A users' interest similarity calculating method in Folksonomy
下载PDF
导出
摘要 在社会化标签系统Folksonomy中,标签不仅能描述资源的内容,而且能体现用户的兴趣偏好.通过标签来表征用户的兴趣,定义了标注行为一致程度、用户资源共享程度和好友间兴趣相似度概念.使用用户对资源的标注行为一致程度来建立用户兴趣模型.通过统计实验发现:Folksonomy系统内好友间兴趣相似度高,但用户资源共享程度却较低;因此,将好友间兴趣相似度引入用户间兴趣相似度的计算公式中.将新的用户间兴趣相似度计算方法使用于SCAN社区发现算法中,社区发现结果验证了用户间兴趣相似性度量方法是有效的. Folksonomies are part of a new generation of tools for the retrieval,deployment, representation and production of information,commonly termed "Web 2.0". Tagging, which is one of the defining characteristics of Web 2.0 services, allows users to collectively classify and find information. A community of interest is a community of people who share a common interest or passion. It is important to discover the community of interest to help its members to take part in the community to exchange information, to obtain answers to personal questions or problems, to improve their understanding of a subject,and to share common passions or to play. The objective of this paper is to study a new measure method of similarity between users' in order to detect communities of interest. We introduce some concepts such as the degree of annotating consistency(DAC), the degree of resource sharing between friends(DRSF)and the degree of interest similarity between friends(I)lSF)using tags to represent users' interest. We construct the user interest model through the degree of annotating consistency. According to results of the statistical experiments,we find that the DISF is higher but the DRSF is lower among friends in a Folksonomy system. Therefore, we improve the measure method of similarity between users' by introducing into the DISF. We revise the SCAN algorithm to detect community by using the new measure method,and the experimental results show that the proposed method is more effective.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期588-595,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61272060 61379114) 重庆市自然科学基金重点项目(cstc2013jjB40003)
关键词 FOLKSONOMY 兴趣相似性 好友关系 Folksonomy,interest similarity,community,friendship
  • 相关文献

参考文献19

  • 1Li X,Lei G, Zhao Y E. Tag-based social interest discovery. Proceedings of the 17 International Conference on World Wide Web. Beijing, China, 2008:6754684. 被引量:1
  • 2Illig J, Andreas H, Robert J, et al. A comparison of content-based tag recommendations in Folksonomy systems. Knowledge Processing and Data Analysis,2011,6581 : 136-149. 被引量:1
  • 3Cai Y, Li Q. Personalized search by tag-based user profile .and resource profile in collaborative tagging systems. Proceedings of the 19th ACM International Conference on Information and Knowledge Management. Toronto, Ontario, Canada, 2010 : 969 - 978. 被引量:1
  • 4Tao Z W, Hu J, He W, et al. Modeling user's preference in Folksonomy for personalized search. Proceedings of the 2011 International Conference on Cloud and Service Computing, Beijing, China, 2011:55-59. 被引量:1
  • 5Girvan M, Mark E J N. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 2002, 99 (12): 7821-7826. 被引量:1
  • 6Newman, Mark E J, Girvan M. Finding and evaluating community structure in networks. Physical Review E,2004,69(2):1-16. 被引量:1
  • 7Palla G. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005,435 (7043) : 814 - 818. 被引量:1
  • 8He F G, Zhang Y P, Zhang L. Community partition method for network based on granularity. Journal of Nanjing University (Natural Sciences), 2010,46 (5) : 511- 519. 被引量:1
  • 9Cheng X Q, Shen H W. Community analysis in social information network. Communication of the CCF,2011,7(12) :12420. 被引量:1
  • 10Michlmayr E, Steve C. Learning user profiles from tagging data and leveraging them for personal(ized) information access. Workshop on Tagging and Metadata for Social Information Or- ganization. Banff, Canada, 2007 : 1 - 8. 被引量:1

同被引文献72

  • 1梁邦勇,李涓子,王克宏.基于语义Web的网页推荐模型[J].清华大学学报(自然科学版),2004,44(9):1272-1276. 被引量:9
  • 2Lewis TG.网络科学:原理与应用[M].陈向阳,巨修炼等,译.北京:机械工业出版社,2011:87-140. 被引量:6
  • 3WEINBERGER D.新数字秩序的革命[M].张岩,译.北京:中信出版社,2008. 被引量:2
  • 4POPPER K.客观的知识:一个进化论的研究[M].舒炜光,卓如飞,梁咏新,等译.杭州:中国美术学院出版社,2003: 109-153. 被引量:1
  • 5TONKIN E. Searching the long tail: hidden structure in social tag-ging [J ]. Advances in classification research online,2006,17(1): 1 -10. 被引量:1
  • 6SHEPITSEN A, GEMMELL J, MOBASHERB, et al. Personalizedrecommendation in social tagging systems [ C ]//PU P, BRIDGED,MOBASHER B,et al. Proceedings of the 2008 ACM conferenceon recommender systems. New York: ACM, 2008: 259 -266. 被引量:1
  • 7UDDIN M N,DUONG T H, NGUYEN NT, et al. Semantic simi-larity measures for enhancing information retrieval in folksonomies[J ]. Expert systems with applications, 2013,40 (5 ): 1645-1653. 被引量:1
  • 8LEWIS T G.网络科学:原理与应用[M].陈向阳,巨修炼,等译.北京:机械工业出版社,2011: 1-14. 被引量:1
  • 9HEYMANN P, GARCIA - MOLINA H. Collaborative creation ofcommunal hierarchical taxonomies in social tagging systems [ EB/OL]. [2016 -03 - 15 ]. http://ilpubs. Stanford. edu:8090/775/1/2006 -10. pdf. 被引量:1
  • 10CATTUTO C. Emergent community structure in social tagging sys-tems[ J ]. Advances in complex systems, 2008, 11 (4 ) : 597-608. 被引量:1

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部