期刊文献+

Hybrid Improved Self-adaptive Differential Evolution and Nelder-Mead Simplex Method for Solving Constrained Real-Parameters

Hybrid Improved Self-adaptive Differential Evolution and Nelder-Mead Simplex Method for Solving Constrained Real-Parameters
下载PDF
导出
摘要 In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.
出处 《Journal of Mechanics Engineering and Automation》 2013年第9期551-559,共9页 机械工程与自动化(英文版)
关键词 Differential evolution hybrid algorithms evolutionary computation global search local search simplex method. 差分进化算法 自适应控制 混合算法 实时参数 控制参数 求解 开发能力 策略控制
  • 相关文献

参考文献9

  • 1J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308-313. 被引量:1
  • 2R. Storn, K. Price, Differential Evolution--A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical report tr-95-012, ICSI, 1995. 被引量:1
  • 3R. Storn, K. Price, Differential evolution--A simple and efficient heuristic for global optimization over continuous spaces, Journal Global Optimization 11 (1997) 341-359. 被引量:1
  • 4H. Hasegawa, S. Tooyama, Adaptive plan system with genetic algorithm using the variable neighborhood range control, in: IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, 2009. 被引量:1
  • 5R. Meza, G. Sanchis, J. Blasco, X. Herrero, Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems, in: IEEE Congress on Evolutionary Computation (CEC2011), New Orleans, LA, 2011. 被引量:1
  • 6K. Ragsdell, D. Phillips, Optimal design of a class of welded structures using geometric programming, J. Eng. Ind. 98 (3) (1976) 1021-1025. 被引量:1
  • 7E. Sandgren, Nonlinear integer and discrete programming in mechanical design optimization, J. Mech. Des.-T. ASME 112 (2) (1990) 223-229. 被引量:1
  • 8J. Golinski, An adaptive optimization system applied to machine synthesis, Mech. Mach. Theory 8 (4) (1973) 419-436. 被引量:1
  • 9J. Arora, Introduction to Optimum Design, McGraw Hill, New York, 1989. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部