期刊文献+

基于多传感器信息融合方法的刀具破损识别 被引量:2

Tool Breakage Monitoring Based on Information Coordination From Multi-sensors
下载PDF
导出
摘要 针对铣削过程监控中多目标状态源存在同频干扰的问题,基于经验模态分解和独立分量分析提出了一种多通道信号盲源分离算法,以声音传感器及振动传感器为信号检测元件,利用多传感器信息融合技术对铣削加工过程中刀具破损监测相关技术问题进行了详细分析。通过设计多齿铣削试验,将所采集的声音信号与振动加速度信号进行了对比分析,并对声振信号进行EMD-ICA分析。研究表明:①切削声音信号和Y轴方向上的振动加速度信号处在同一个频段;②多传感器信息融合监测方式能消除监测信号中存在的背景噪声及目标状态相互干扰的问题,提取出混合信号中与刀具破损状态相关的故障特征频率成分,为刀具破损识别提供依据。 An information coordination from multi-sensors approach based on empirical mode decomposition(EMD) and independent component analysis(ICA) was presented to deal with the blind source separation(BSS) problem of cutting sound signals and vibration signals in the process of face milling.EMD method was used to extract all intrinsic mode functions(IMF) in the sound and vibration signals which had been acquired from face milling processes,then deal with those IMFs using FastICA,and can obtain a lot of independent components.Analysis result shows that ① the main frequency of the sound signal and the(Y) axis direction component of the vibration acceleration signal are at the same frequency band ② this method can extract the characteristic frequency components related to tool breakage from mixed signals.
出处 《组合机床与自动化加工技术》 北大核心 2013年第10期61-65,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金资助项目(51075276)
关键词 刀具状态监测 切削声振信号 经验模态分解 独立分量分析 tool breakage monitoring cutting vibration signals and sound signals, empirical mode decomposition (EMD) independent component analysis (ICA)
  • 相关文献

参考文献11

  • 1Mannan MA, Kassim AA, Jing M (2000) Application of im- age and sound analysis techniques to monitor the condition of cutting tools. Pattern Recogn Lett 21 ( 11 ) :969 -979. 被引量:1
  • 2C.H. Jun, S.H. Suh, Statistical tool breakage detection schemes based on vibration signals in NC milling, Interna-tional Journal of Machine Tools & Manufacture 39 (1999) 1733 - 1746. 被引量:1
  • 3I. Marinescu, D.A. Axinte, A critical analysis of effective- ness of acoustic emission signals to detect tool and workpiece malfunctions in milling operations, International Journal of Machine Tools & Manufacture, 48 (2008) 1148 - 1160. 被引量:1
  • 4E. Kuljanic, M. Sortino, TWEN, a method based on cutting forces--monitoring tool wear in face milling, International Journal of Machine Tools & Manufacture, 45 (2005) :29 - 34. 被引量:1
  • 5Shao, H. , Wang, H. L. , Zhao, X.M. A cutting power mod- el for tool wear mentoring in Milling[ J]. International Journal of Machine Tools & Manufacture. 2004, 44 : 1503 - 1509. 被引量:1
  • 6胡秋.CIMS环境下刀具状态监测研究回顾与展望[J].机床与液压,2003,31(6):17-18. 被引量:11
  • 7史恒,李桂林,王伟,历玉英,高星.基于总体经验模式分解的地震信号随机噪声消除[J].地球物理学进展,2011,26(1):71-78. 被引量:15
  • 8HUANG N E, SHEN Z, S LONG R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis [ J]. Proceedings of the Royal Society of London, 1998,454:903 - 995. 被引量:1
  • 9Cardoso, J.F. and A. Souloumiac, Blind beamforming for non-Gaussian signals, lEE Proceedings, Part F: Radar and Signal Processing, 1993,140(6) :362 - 370. 被引量:1
  • 10Bell, A.J. and T.J. Sejnowski, An information-maximiza- tion approach to blind separation and blind deconvolution. Neural computation, 1995,7 ( 6 ) : 1129 - 1159. 被引量:1

二级参考文献23

共引文献24

同被引文献33

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部