期刊文献+

基于混合智能计算的铣刀状态监测 被引量:1

End mill wear monitoring by hybrid intelligent data fusion
下载PDF
导出
摘要 提出了一种基于混合智能融合技术进行铣刀磨损量监测和预测方法。利用多传感器对切削力和振动信号进行监测,通过频率变换提取切削力特征量,采用小波包分解技术提取振动信号特征量。通过信号特征值的组合,分别探讨了几种混合智能数据融合技术-小波神经网络,遗传神经网络,遗传小波神经网络对刀具磨损量的预测效果。实验分析表明,提出的几种基于多传感器的混合智能数据融合技术均能够有效地完成刀具磨损量监测和预测,同时对它们各自的特点进行了比较分析。 Hybrid intelligent data fusion for monitoring end milling tool wear is presented in this paper.Signals of cutting force and vibration is measured with multi-sensors and features extraction in frequency domain and time-frequency domain using wavelet package decomposition.Several hybrid intelligent data fusion methods,which are wavelet neural networks,Generic Algorithm Neural Networks (GA-NN),and wavelet generic algorithm neural networks for predicting tool wear value are debated.The results show experimently all of these presented methods effectively implement tool wear monitoring and prediction,and the characters of these methods are analyzed.
作者 郑金兴
出处 《计算机工程与应用》 CSCD 北大核心 2007年第32期233-236,共4页 Computer Engineering and Applications
关键词 刀具磨损 多传感器 混合智能数据融合 小波包分解 tool wear multi-sensors hybrid intelligent data fusion wavelet package decomposition
  • 相关文献

参考文献8

二级参考文献20

  • 1[1]Meyer Y.Wavelet:Algorithm and application[M].Philadelphia,PA:SIAM Press,1993. 被引量:1
  • 2[2]Zhang Qinghua,Benveniste A. Wavelet network [J].IEEE Trans on Neural Networks, 1992,3(6):889-898. 被引量:1
  • 3[3]Kurkora Vera Kolmogorov's.Theorem and multilayer neural networks[J].Neural Networks, 1990,5(3):501-503. 被引量:1
  • 4[4]Hecht-Nielsen R. Theory of the backpropagation neural network [A].Proc of LJCNN, 1989,1[C].593-598. 被引量:1
  • 5[5]Whitly D, Hanson T.Optimizing neural network using faster, more accurate genetic search [A].Proc of the International conference on Genetic Algorithm, CA, 1989[C].391-396. 被引量:1
  • 6[6]Bao-Liang Lu,Masami Ito.Task Decomposition and Module Combination Based on Class Relations:A Modular Neural Network for Pattern Classification [J].IEEE Trans on Neural Networks, 1999,10(5):1244-1256. 被引量:1
  • 7Li Xiaoli,J Intelligent Manufacturing,1997年,8期,1页 被引量:1
  • 8Hong G S,Int J Machine Tool Manufacturing,1996年,36期,551页 被引量:1
  • 9Chin Tenglin,IEEE Trans Computers,1991年,40卷,12期 被引量:1
  • 10Liang S,J Eng Ind,1989年,199页 被引量:1

共引文献66

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部