期刊文献+

改进的感应电机静态补偿电压模型及低速性能分析 被引量:10

Low-speed Performance Analysis of a Modified Statically Compensated Voltage Model for Induction Motors
下载PDF
导出
摘要 针对静态补偿电压模型磁链观测器存在的低速运行时磁链估计不准确、低速性能不佳等问题,提出了一种改进的感应电机静态补偿磁链估计电压模型。该模型在高速运行时采用静态补偿电压模型进行磁链估计,低速时采用d-q电流模型进行补偿。该模型能在全速范围内实现平滑切换,有效提高了电机低速运行磁链估计性能。结合感应电机数学模型,通过理论推导建立了基于改进静态补偿电压模型的矢量控制非线性磁链动态模型,并利用李雅普诺夫线性化理论分析了该非线性动态模型在低速运行时的稳定性。同时,对电机参数不准确情况下的改进静态补偿电压模型磁链估计参数敏感性进行了分析。仿真研究和实验结果验证了理论分析的正确性。 This paper proposes a novel modified statically compensated voltage model (SCVM) to remedy the poor performance and inaccurate flux estimation at low speed in the SCVM. In this combined model, the SCVM is employed at ~high speed while the d-q current model is used for compensation at low speed. This model can switchover smoothly for the complete speed range by utilizing the transitional compensated model and improve the low speed performance effectively. On the basic of motor mathematical models, the flux nonlinear dynamic equations of vector control systems based on the modified SCVM have been established by theoretical derivation. By utilizing Lyapunov linearization theory, the stability of the nonlinear system at low speed is analyzed. Meanwhile, the parameter sensitivity of this model is also analyzed under the assumption of inaccurate model parameters. Both simulation and experimental results verify the theoretical analysis.
出处 《中国电机工程学报》 EI CSCD 北大核心 2013年第30期81-89,13,共9页 Proceedings of the CSEE
关键词 感应电机 改进的静态补偿电压模型 矢量控制 低速性能 稳定性分析 induction motor (IM) modified staticallycompensated voltage model vector control low speedperformance stability analysis
  • 相关文献

参考文献10

二级参考文献105

共引文献169

同被引文献83

  • 1吕英俊,黄旭,苏涛,李丽.感应电动机无速度传感器矢量控制系统极低速性能研究[J].中国电机工程学报,2020,40(4):1320-1328. 被引量:14
  • 2吕昊,马伟明,聂子玲,揭贵生.磁场定向不准对感应电动机系统性能影响的分析[J].电工技术学报,2005,20(8):84-88. 被引量:31
  • 3王宇,邓智泉,王晓琳.一种新颖的电机磁链辨识算法[J].中国电机工程学报,2007,27(6):39-44. 被引量:49
  • 4Lin F J,Hung Y C,Hwang J C,et al. Digital signalprocessor based probabilistic fuzzy neural network controlof in-wheel motor drive for light electric vehicle[J].Electric Power Applications, IET, 2012,6(2): 47-61. 被引量:1
  • 5Ghariani M, Hachicha M R, LtifiA,et al. Sliding modecontrol and neuro-fuzzy network observer for inductionmotor in EVs applications [J]. International Journal ofElectric and Hybrid Vehicles,2011,3(1): 20-46. 被引量:1
  • 6Hongryel K, Jubum S,Jang L. A high-speed sliding-modeobserver for the sensorless speed control of a PMSM[J].IEEE Transactions on Industry Electronics, 2011? 58(9):4069-4077. 被引量:1
  • 7Hachicha M R,Ghariani M. Induction machine DTCoptimization using artificial intelligence for EV'sapplications[C]//Proceedings of International Multi-Conference on Systems,signals and Devices. Sousse,Tunisia: IEEE, 2011: 1-5. 被引量:1
  • 8Rigatos G G. A derivative-free Kalman filtering approachto state estimation-based control of nonlinear systems [J].IEEE Transactions on Industry Electronics,2012,59(10):3987-3997. 被引量:1
  • 9Jansen P L. The integration of state estimation,control,and design for induction machines[D] . Madison :University of Wisconsin-Madison,1993. 被引量:1
  • 10Jansen PL,Lorenz RD,Novotny D W. Observer-baseddirect field orientation : analysis and comparison ofalternative methods[J]. IEEE Transactions on IndustryApplications,1994,30(4): 945-953. 被引量:1

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部