期刊文献+

四数平方和定理的若干注记

Some Notes on Four Square Theorem
下载PDF
导出
摘要 运用初等变换方法和四元数范数性质,得到一个正整数可写成四个正整数的平方和的几个判别条件;还证明了若两个整数可写成四个正整数的平方和,则它们的乘积也可写成另外四个正整数的平方和,并给出相应的算法. In this norm, we got a few square. Finite positive can be written as sum paper, using elementary transformation method and properties of quaternion diseriminant conditions of a positive integer written as four positive integer integer can be expressed as sum of four positive integer square, and its product of four positive integer square.
出处 《广西师范学院学报(自然科学版)》 2013年第3期28-30,共3页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西自然科学基金项目(2011GXNSFA018139)
关键词 四元数 四数平方和定理 算法 quaternion four square theorem algorithm
  • 相关文献

参考文献9

  • 1HARDY G, WRIGHT E. An Introduction to the Theory of Numbers[M]. 4th ed. London: Oxford University Press, 1971. 被引量:1
  • 2HERSTEIN I N. Topics in Algebra[M].New York: J Wiley, 1975. 被引量:1
  • 3WEIL Andre. Number Theory: An Approach Through History[M]. Boston: Birkhauser, 1983. 被引量:1
  • 4TZANAKIS C. Rotations, complex numbers and quaternions[J]. Int J Math Educ Sci Technol, 1995, 26:45-60. 被引量:1
  • 5ZHANG Fuzhen. Quaternions and Matrices of Quaternions[J]. Linear Algebra and Its Application, 1997,251: 21-57. 被引量:1
  • 6连德忠,许陆文.四元数实表示的代数应用[J].南京师大学报(自然科学版),2004,27(4):19-24. 被引量:6
  • 7姜同松,魏木生.四元数矩阵的实表示与四元数矩阵方程[J].数学物理学报(A辑),2006,26(4):578-584. 被引量:18
  • 8李文亮著..四元数矩阵[M].长沙:国防科技大学出版社,2002:330.
  • 9庄瓦金著..体上矩阵理论导引[M].北京:科学出版社,2006:306.

二级参考文献12

  • 1Adler S L. Quaternionic Quantum Mechanics and Quantum Fields. New York: Oxford U P, 1994 被引量:1
  • 2Finkelstein D, Jauch J M, Schiminovich S, Speiser D. Foundations of quaternion quantum mechanics. J Math Phys, 1962, 3207-3220 被引量:1
  • 3Vicente H, Maite G. Explicit solution of the matrix equation AXB - CXD = E. Linear Algebra Appl,1989, 121:333-344 被引量:1
  • 4King-Wah Eric Chu. The solution of the matrix equation AXB - CXD= E and (YA - DZ, YC - BZ) =(E, F). Linear Algebra Appl, 1987, 93:93-105 被引量:1
  • 5Djaferis T E, Mitter S K. Algebraic methods for the study of some linear matrix equations. Linear Algebra Appl, 1982, 44:125-142 被引量:1
  • 6Wimmer H K. Explicit solutions of the matrix equation ∑A^iXDi = C. SIAM J Matrix Anal Appl, 1992,13:1123-1130 被引量:1
  • 7Jameson A. Solution of the equation AX - XB=C by inversion of an M×M or N×N matrix. SIAM J Appl Math, 1968, 16:1020-1023 被引量:1
  • 8Roth W E. The equations AX - YB= C and AX - XB = C in matrices. Proc Amer Math Soc, 1952,3:392-396 被引量:1
  • 9Xu Guiping, Wei Musheng, Zheng Daosheng. On solution of matrix equation AXB+CYD= E. Linear Algebra Appl, 1998, 279:93-109 被引量:1
  • 10Huang Liping, The matrix equation AXB - CXD=E over the quaternion field. Linear Algebra Appl,1996, 234:197-208 被引量:1

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部