期刊文献+

关于高阶微分方程组的正解

Positive Solutions for High-Order Nonlinear Ordinary Differential Systems
原文传递
导出
摘要 研究一类含有n个参数的高阶非线性微分方程组的正解问题,通过使用Krasnosel'skii不动点定理,在适当的条件下,得到一个和多个正解的存在性的新的结果. By using Krasnosel'skii fixed point theorem,a kind of high-order nonlinear ordinary differential systems under suitable conditions is studied.Some new results on the existence of single and multiplicity of positive solutions are obtained.
作者 张芳
出处 《生物数学学报》 2013年第3期409-414,共6页 Journal of Biomathematics
关键词 正解 非线性微分方程组 不动点定理 Positive solution Nonlinary ordinary differential systems Fixed point theorem
  • 相关文献

参考文献8

二级参考文献29

  • 1伏升茂,温紫娟,宋雪梅.互惠Shigesada-Kawasaki-Teramoto模型整体解的存在性和稳定性[J].兰州大学学报(自然科学版),2006,42(4):121-126. 被引量:6
  • 2凌智,林支桂.三种群互惠模型抛物系统解的整体存在与爆破[J].生物数学学报,2007,22(2):209-214. 被引量:7
  • 3Shigesada N, Kawasaki K, Teramoto E. Spatial segregation of interacting species[J]. Theor Biology, 1979, 79(1): 83-99. 被引量:1
  • 4Dubey B, Hussain B. A predator-prey interaction model with self and cross-diffusion[J]. Ecological Modelling, 2001, 141(1): 67-76. 被引量:1
  • 5Shim S-A. Uniform boundedness and convergence of solutions to the systems with cross-diffusion dominated by self-diffusion[J]. Nonlinear Analysis: RWA, 2003, 4(1): 65--86. 被引量:1
  • 6Amann H. Dynamic theory of quasilinear parabolic equations-I. Abstract evolution equations[J]. Nonlinear Analysis, 1988, 12(9): 895-919. 被引量:1
  • 7Amann H. Dynamic theory of quasilinear parabolic equations-II. Reaction-diffusion[J1. Diff Int Eqs, 1990, 3(1): 13-75. 被引量:1
  • 8Amann H. Dynamic theory of quasilinear parabolic equations-III. Global existence[J]. Math Z, 1989, 202(2): 219-250. 被引量:1
  • 9Aiello W G, Freedman H I. A time-delay model of single species growth with stage structure[J]. Math.Biosci, 1990, 101:139-153. 被引量:1
  • 10Al-omari J F M, Gourley S A. Stability and traveling fronts in Lotka-Volterra competition models with stage structure[J]. SIAM J.Appl.Math, 2003, 63:2063 2086. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部