期刊文献+

Large deviations under a viewpoint of metric geometry:Measure-valued process cases

Large deviations under a viewpoint of metric geometry:Measure-valued process cases
原文传递
导出
摘要 We illustrate a metric geometry viewpoint for large deviation principles by analyzing the proof of a long-standing conjecture on an explicit Schilder-type theorem for super-Brownian motions given by the authors recently,and by understanding sample path large deviations for Fleming-Viot processes. We illustrate a metric geometry viewpoint for large deviation principles by analyzing the proof of a long-standing conjecture on an explicit Schilder-type theorem for super-Brownian motions given by the authors recently, and by understanding sample path large deviations for Fleming-Viot processes.
作者 XIANG KaiNan
出处 《Science China Mathematics》 SCIE 2013年第11期2335-2351,共17页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.10971106 and 11271204)
关键词 large deviation super-Brownian motion Fleming-Viot process metric geometry of path space 度量几何 大偏差 测量值 案例 超布朗运动 弗莱明 定理
  • 相关文献

参考文献68

  • 1Aldous D J. Tree-based models for random distribution of mass. J Statist Phys, 1993, 73:625-641. 被引量:1
  • 2Bebernes J, Bricher S. Final time blowup profiles for semilinear parabolic equations via center manifold theory. SIAM J Math Anal, 1992, 23:852-869. 被引量:1
  • 3Ben Arous G, Ledoux M. Schilder's large deviation principle without topology. Pitman Research Notes Math Ser, 1993, 284:107-121. 被引量:1
  • 4Bousquet-Melou M. Rational and algebraic series in combinatorial enumeration. In: Proceedings of ICM 2006 Madrid, vol. Ⅲ. Zfirich: European Mathematical Society, 2006, 789-826. 被引量:1
  • 5Bramson M, Cox J T, Le Gall 3 F. Super-Brownian limits of voter model clusters. Ann Probab, 2001, 29:1001-1032. 被引量:1
  • 6Chassaing P, Schaeffer G. Random planar lattices and integrated super Brownian excursion. Probab Theory Related Fields, 2004, 128:161-212. 被引量:1
  • 7Cox J T, Durrett R, Perkins E. Rescaled voter models converge to super-Brownian motion. Ann Probab, 2000, 28: 185-234. 被引量:1
  • 8Cox J T, Perkins E. Rescaled Lotka-Volterra models converge to super-Brownian motion. Ann Probab, 2005, 33: 904-947. 被引量:1
  • 9Cramer H. Sur un nouveau theoeme limite de la theorie de probabilites. Actualites Scientifiques et Industrielles, 736. Colloque consacre a la theorie de probabilites, vol. 3. Paris: Hermann, 1938, 5-23. 被引量:1
  • 10Dawson D A. Measure-VMued Markov Processes. Lecture Notes in Math, 1541. New York: Springer-Verlag, 1993. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部