摘要
本文首先对紧致的度量拓扑空间证明了有限点集的费马点是存在的。其次,运用度量几何的经典方法考察了度量空间(包括双曲空间和Banach空间)中有限点集的费马点的唯一性。此外,还对n维欧氏空间En中有限点集的费马点作了进一步研究。
First, we proved in this paper the existeance of Fermat points of finite point sets in compact metric topological spaces. Secondly, we discussed the uniqueness of Fermat points of finite point sets in some metric spaces (including hyperbolic spaces and Banach spaces). And last, we made a further study about Fermat points of finite point sets in Euclidean spaces En.
出处
《数学杂志》
CSCD
1997年第3期359-364,共6页
Journal of Mathematics
关键词
距离几何
度量空间
有限点集
费马点
distance geometry metric space finite point sets Fermat point