期刊文献+

基于运动轨迹的视频语义事件建模方法 被引量:6

Modeling approach of the video semantic events based on motion trajectories
下载PDF
导出
摘要 人体行为分析是计算机视觉领域的重要课题之一。针对人体行为事件,提出了一种基于运动轨迹的视频语义事件建模方法。首先,采用改进的基于Surendra背景建模算法检测运动行人目标,然后利用Meanshift跟踪算法得到目标行人的运动轨迹路径,最后根据人体行走轨迹特征和所定义语义事件模型进行相关事件判断,并搭建平台实现视频语义事件自动监测。对监控视频公开数据集的实验测试表明,提出的方法可准确有效的识别常见的人体行为,为视频语义领域提供一种可靠、准确的技术方案。 The analysis of human behavior is one of the important topics in the field of computer vision. Aiming at human behavior events, this paper presents a modeling approach of the video semantic events based on motion trajectories. Firstly, we adopt the improved Surendra background modeling algorithm to detect moving targets. And then,by making use of the Meanshift algorithm to get the trajectories of the pedestrians, we can judge these related events according to human walking trajectory features and the defined modeling approach of the video semantic events. After that,a system is built to achieve automatic monitoring of video semantic events. The test result of surveillance video public data sets shows that the proposed method can recognize common human behaviors accurately and effectively,and provides one of the reliable and accurate technical solutions in video semantic field.
出处 《电子测量技术》 2013年第9期31-36,40,共7页 Electronic Measurement Technology
基金 国家自然科学基金(61100124 61202168 61170239) 天津市应用基础与前沿技术研究计划项目(10JCYBJC25500) 2010和2011天津大学自主创新基金
关键词 智能视频监控 人体行为 轨迹分析 事件建模 intelligent video surveillance human activity trajectory analysis event modeling
  • 相关文献

参考文献13

  • 1MULLER-SCHNEIDERS S,JAGER T,LOOS H S, et al. Performance evaluation of a real time videosurveillance system[C]. 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005 : 137-143. 被引量:1
  • 2周巧云 于仕琪.运动人体行为分析.先进技术研究通报,2009,:47-51. 被引量:4
  • 3BOBICK A F,DAVIS J W. The recognition of human movement using temporal templates [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(3) :257-267. 被引量:1
  • 4HELAL S, COOK D. Human activity recognition and pattern discovery [J]. IEEE Pervasive Computing, 2010,9(1) :48-53. 被引量:1
  • 5赵晓东,李其攀,王志成.一种快速人体骨架建模方法[J].计算机应用研究,2012,29(1):383-385. 被引量:4
  • 6MIGLIORE D A, MATTEUCCI M, NACCARI M. A revaluation of frame difference in fast and robust motion detection [C]. Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks, 2006 : 215-218. 被引量:1
  • 7ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]. Proceedings of the 17th International Conference on Pattern Recognition, 2004 : 28-31. 被引量:1
  • 8蒋建国,安红新,齐美彬,许郴.复杂场景下的快速目标检测算法[J].电子测量与仪器学报,2012,26(3):261-266. 被引量:15
  • 9赵钦君,赵东标,陆永华.一种基于时空信息的多目标检测新算法[J].仪器仪表学报,2011,32(4):877-882. 被引量:26
  • 10BARRON J L, FLEET D J, BEAUCHEMIN S S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994,12(1) : 43-77. 被引量:1

二级参考文献52

共引文献100

同被引文献110

  • 1朱智贤.现代认知心理学评述[J].北京师范大学学报(社会科学版),1985(1):1-6. 被引量:16
  • 2高贵,计科峰,匡纲要,李德仁.高分辨率SAR图像目标峰值提取及峰值稳定性分析[J].电子与信息学报,2005,27(4):561-565. 被引量:7
  • 3刘宏哲,鲍泓,须德.基于内容的视频分层语义联想模型[J].计算机应用,2005,25(8):1797-1800. 被引量:3
  • 4栾悉道,谢毓湘,韩智广,吴玲达.新闻视频挖掘技术研究[J].计算机科学,2007,34(2):1-6. 被引量:6
  • 5钟志,徐扬生,石为人,叶伟中,李家强.群体异常检测(英文)[J].仪器仪表学报,2007,28(4):614-620. 被引量:4
  • 6POPOOLA O P, WANG K. Video-based abnormal hu- man behavior recognition-a review [ J ], IEEE Transac- tions on System, Man, and Cybernetics Part C, 2012,42 (6) : 865-878. 被引量:1
  • 7COLLINS R T, LIPTON A J, KANADE T. A system for video surveillance and monitoring [ C]. Proceedings of the 1999 American Nuclear Society (ANS) Eighth In- ternational Topical Meeting on Robotic and Remote Sys- tems, Pittsburgh, PA, USA ,25-29April, 1999.12-19. 被引量:1
  • 8HARITAOGLU I, HARWOOD D, DAVIS L S. W4 : A real time system for detecting and tracking people [ C ]. Proceedings of the 1998 IEEE International Conference on Computer Vision and Pattern Recognition, Santa Bar- bara, CA, USA, 23-25June, 1998,962-969. 被引量:1
  • 9HUANG K,TAN T. Vs-star: a visual interpretation sys- tem for visual surveillance[ J]. Pattern Recognition Let- ters,2010,31 ( 15 ) : 2265-2285. 被引量:1
  • 10University of California, San Diego. UCSD Anomaly De-tection Dataset [ EB/OL ]. http ://www. svcl. ucsd. edu/ project-s/anomaly/dataset, html. 2010-10-10. 被引量:1

引证文献6

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部