期刊文献+

基于四元数模型的密集人群视频特征提取 被引量:4

Feature extraction of dense crowd video based on quaternion model
下载PDF
导出
摘要 密集人群场景下的视频异常事件检测是当今智能监控技术研究中的一个热点。本文针对如何合理提取面向密集人群场景视频的时空特征、以及提高密集人群异常检测的效率进行研究,结合人类视觉感知系统相关知识,分析了将视频的时间特征和空间特征相融合的四元数傅里叶变换,提出了一种新的适用于密集人群场景的特征提取方法。最后通过实验证明,本文所提出的特征能够较为全面准确地描述密集人群视频场景中的特征,并取得了良好的异常检测效果。 Abnormal crowd behavior detection is a highlv focused research area of the intelligent monitoring .The paper mainly aims at studying how to extract spatio‐temporal characteristics of dense crowd video ,and how to improve the efficiency of anomaly detection .Combining with human visual system(HVS) ,we proposed a novel method based on the analysis of the quaternion Fourier transform which is a fusion of spatio‐temporal characteristics in order to extract features of dense crowd scene .It is proved by the experiment that the proposed method can describe the dense crowd scene from different aspects and achieve good effect of anomaly detection as well .
出处 《电子测量技术》 2016年第7期72-75,80,共5页 Electronic Measurement Technology
关键词 密集人群视频 四元数傅里叶变换 特征提取 dense crowd video quaternion Fourier transform feature extraction
  • 相关文献

参考文献15

  • 1吴新宇,郭会文,李楠楠,王欢,陈彦伦.基于视频的人群异常事件检测综述[J].电子测量与仪器学报,2014,28(6):575-584. 被引量:27
  • 2I.I T, CHANG H, WANG M, et al. Crowded scene analysis: a survey[J]. IEEE Transactions on Circuits g>. Systems for Video Technology, 2015, x ( 3): 367-386. 被引量:1
  • 3AI.I S, SHAH M. A lagrangian particle dynamicsapproach for crowd flow segmentation and stahility analysis[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2007 : 1-6. 被引量:1
  • 4MEHRAN R, ()YAMA A, SHAH M. Abnormal crowd behavior detection using social force model[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.. 935-942. 被引量:1
  • 5ZHOU B, TANG X, WANG X. Coherent filtering: detecting coherent motions from crowd clutters [J]. Lecture Notes in Computer Science, 2012 : 857-871. 被引量:1
  • 6KRATZ L, NISHINO K. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models [C]. IEEE Conference on Computer Vision ,. Pattern Recognition. IEEE Computer Society, 2009 .. 1446-1453. 被引量:1
  • 7谢捷,焦佳佳,王丽娜,张之江.密集人群建模中的阈值训练[J].电子测量技术,2013,36(2):34-38. 被引量:2
  • 8SHWARTZ S, NAMER E, SCHECHNER Y Y. Blind haze separation[C]. IEEE Computer Sociely, 2006.. 1984-1991. 被引量:1
  • 9GUO C, ZHANG L. A novel muhiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2010, 19 ( 1 ) : 185-198. 被引量:1
  • 10FANG Y, I.IN W, LEE B S, et al. Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum [J ]. IEEE Transactions on Multimedia, 2012, 14( 1 ) : 187-198. 被引量:1

二级参考文献68

  • 1国辛纯,郭继昌,窦修全.基于HMM的语音信号情感识别研究[J].电子测量技术,2006,29(5):69-70. 被引量:10
  • 2钟志,徐扬生,石为人,叶伟中,李家强.群体异常检测(英文)[J].仪器仪表学报,2007,28(4):614-620. 被引量:4
  • 3KRATZ L, NISHINO K. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models[C] In CVPR,2009 : 1446-1453. 被引量:1
  • 4KRATZ L,NISHINO K. Factorizing scene albedo and depth from a single foggy image[C]. In IEEE Twelfth International Conference on Computer Vision ICCV' 09,2009 : 1701-1708. 被引量:1
  • 5KRATZ L, NISHINO K. Tracking pedestrians using local spatio-temporal motion patterns in extremely crowded scenes[ J]. In IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34 ( 5 ) 987-1002. 被引量:1
  • 6GRYN J M,WILDES R P,TSOTSOS J K. Detecting motion patterns via direction maps with application to surveillanee[J]. In IEEE Workshop on Motion and Video Computing,2005,113(2) :291-307. 被引量:1
  • 7DEE H, HOGG D. Detecting inexplicable behaviour[C]. In Proc. of British Macine Vision Conf,2004:477-486. 被引量:1
  • 8ANDRADE E L, BLUNSDEN S, FISHER R B. Modelling crowd scenes for event detection [ C]. International Conference on Pattern Recognition, 2006:175-178. 被引量:1
  • 9AIJ S, MUBARA K. Floor fields for tracking in high density crowd scenes[J]. Computer Vision,2008 : 1-14. 被引量:1
  • 10ADAM A,RIVLIN E,SHIMSHONI 1,et al. Robust real- time unusual event detection using multiple fixed-location monitors [ C]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008,30 ( 3 ) : 555 - 560. 被引量:1

共引文献27

同被引文献31

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部