期刊文献+

态势评估的变结构区间概率动态贝叶斯网络方法 被引量:8

Situation assessment using variable structure interval probability dynamic Bayesian network
下载PDF
导出
摘要 针对以往利用贝叶斯网络进行势评估时,贝叶斯网络结构和参数都是固定不变的不足,为提高态势评估准确性,提出一种变结构区间概率动态贝叶斯网络(variable structure interval probability dynamic Bayesian network,VSIP-DBN)进行态势评估的方法。给出了VSIP-DBN的定义,推导了其推理的算法,网络结构能够根据态势变化情况进行改变,并给出了结构变化的判断依据,将参数推广为区间概率的形式,同时提出了区间概率参数的学习方法。将VSIP-DBN应用于态势评估,在典型作战条件下进行仿真分析,不需要精确给出网络参数,即使出现偶然观测误差,也能够准确地评估出当前空战态势,提高了评估的灵活性。 The structure and the parameters of Bayesian network that is used for situation assessment are usually invariable in the past. In order to enhance the veracity of combat situation, a variable structure interval probability dynamic Bayesian network(VSIP-DBN) is proposed. The definition and the inference algorithm of the VSIP-DBN are given, the structure of VSIP-DBN can be varied according to the situation, and the rule of the network structure change is proposed. The parameters of the network are within the interval domain and the parameter learning method is also given. The air combat situation is assessed using VSIP-DBN. In the condition of interval probability parameter, even with incidental observation error, the simulation results show that the proposed model can accurately reflect the correct situation in the typical situations~ so the proposed model en- hance the flexibility of situation assessment.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第9期1891-1897,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61174031)资助课题
关键词 态势评估 动态贝叶斯网络 区间概率 结构变化 situation assessment dynamic Bayesian network (DBN) interval probability variable structure
  • 相关文献

参考文献15

  • 1Chai H M,Wang B S.A fuzzy logic approach for force aggregation and classification in situation assessment[C]// Proc.of the International Conference on Machine Learning and Cybernetics,2007:1220-1225. 被引量:1
  • 2Looney C G,Liang L R.Cognitive situation and threat assessments of ground battlespaces[J].Information Fusion,2003,4(4):297-308. 被引量:1
  • 3Hinman M L.Some computational approaches for situation assessment and impact assessment[C]//Proc.of the 5th International Conference on Information Fusion,2002:687-693. 被引量:1
  • 4姚宗信,李明,陈宗基.多空中作战平台协同对抗多目标态势分析方法[J].系统工程与电子技术,2008,30(2):292-296. 被引量:5
  • 5Johansson F,Falkman G A.Bayesian network approach to threat evaluation with application to an air defense scenario[C]// Proc.of the 11th International Conference on Information Fusion,2008:1352-1358. 被引量:1
  • 6Shi Z F,Liu H Y.Intelligent situation fusion assessment using Bayesian networks[C]// Proc.of the 2nd International Conference on Information and Computing Science,2009:212-215. 被引量:1
  • 7Wang L,Wang M Z.Modeling of combined Bayesian network and cognitive framework for decision making in C2[J].Journal of Systems Engineering and Electronics,2011,21(5):812-820. 被引量:1
  • 8Pearl J.Probabilistic reasoning in intelligent systems:networks of plausible inference[M].San Francisco CA:Morgan Kaufmann Publishers,1988. 被引量:1
  • 9史建国,高晓光,王庆官.变结构离散动态贝叶斯网络参数的自适应产生[J].系统工程与电子技术,2008,30(10):1836-1839. 被引量:7
  • 10史建国,高晓光,李相民.基于离散模糊动态贝叶斯网络的空战态势评估及仿真[J].系统仿真学报,2006,18(5):1093-1096. 被引量:29

二级参考文献76

共引文献76

同被引文献116

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部