期刊文献+

预应力混凝土梁疲劳挠度计算的神经网络模型

Artificial neural network model of fatigue defection for prestressed concrete beam
下载PDF
导出
摘要 在分析多种疲劳损伤累积准则的基础之上,针对混凝土材料疲劳损伤发展受多种因素影响,损伤累积过程表现出非线性,难以用较准确的数学函数模型对其进行描述和分析的问题,建立了基于神经网络的预应力混凝土梁疲劳挠度计算的仿真模型,提出了3种仿真模拟方法,并在结合预应力混凝土梁疲劳实验结果分析的基础上,分析了各方法的精度、优势和适用范围.结果表明,3种仿真模型误差范围在5%~15%之间,可用于预应力混凝土桥梁结构抗疲劳设计及疲劳耐久性评估.建议根据不同情况需求选取合理高效的仿真模拟方法. It is difficult to describe fatigue cumulative damage of concrete via a clear mathematical function, as cumulative damage of concrete is affected by several factors and it performs nonlinear properties. In order to solve this problem, through analyzing several fatigue damage cumulating theories, the simulation calculation model of prestressed concrete beam based on artificial neural network theory is proposed in this paper. Three simulation methods are built, and their precisions, advantages and application conditions are analyzed by fatigue experiment results of prestressed concrete beam. The results indicate that the errors of the three methods are 5 %-15 %. The precision is acceptable in fatigue design or durability evaluation of prestressed concrete beam. It is suggested to apply appropriate model and method in different conditions.
作者 肖赟 雷俊卿
出处 《北京交通大学学报》 CAS CSCD 北大核心 2013年第4期89-93,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(51178042) 中央高校基本科研业务费专项资金资助(2011YJS255)
关键词 预应力混凝土 疲劳 挠度计算 人工神经网络 prestressed concrete fatigue deflection calculation artificial neutral network
  • 相关文献

参考文献5

二级参考文献31

  • 1吴佩刚,赵光仪,白利明.高强混凝土抗压疲劳性能研究[J].土木工程学报,1994,27(3):33-40. 被引量:54
  • 2姚卫星.Miner理论的统计特性分析[J].航空学报,1995,16(5):601-604. 被引量:28
  • 3董聪,郦正能,夏人伟,何庆芝.多层前向网络研究进展及若干问题[J].力学进展,1995,25(2):186-196. 被引量:47
  • 4Ghaboussi J, Garrett Jr JH and Wu X. Material Modeling with Neural Networks. Proceedings of the International Conference on Numerical Methods in Engineering: Theory and Applications, Swansea, U. K., 1990:70-717. 被引量:1
  • 5Gbaboussi J, Gerrett Jr JH and Wu X. Knowledge- based Modeling of Material Behavior with Neural Networks. Journal of Engineering Mechanics Division, ASCE, 117 ( 1 ),1991:132-153. 被引量:1
  • 6Wu, X. and Ghaboussi, J. Modeling Unloading mechanism and cyclic behavior of concrete with adaptive neural networks. Proceedings, Second Asian- Pacific Conference on Computational Mechanics, Sydney, Australia, 1993. 被引量:1
  • 7Ghaboussi, J., Lade, P.V. and Sidarta, D.E. Neural Networks Based Modeling in Geomechanics, Proceedings of 8^th International Conference on Computer Methods and Advances in Geomechanics, Morgantown, WV. 1994. 被引量:1
  • 8Ghaboussi J, Pecknold DA and Haj - Ali JA. Autoprogresaive Training of Neural Networks Constitutive Models, International Journal for Nmnerical Methods in Engineering, 42 (1),1998: 105-127 . 被引量:1
  • 9Ghaboussi J and Sidarta DE. New Nested Adaptive Neural Networks (NANN) for Constitutive Modeling, Computers and Geoteehnies, 22 (1), 1998:29-52. 被引量:1
  • 10Penumadu D and Rongda Zhao. Triaxial compression Behavior of Sand and Gravel Using Artificial Neural Networks (ANN),Computers and Geotechnics, 24, 1999:207- 230. 被引量:1

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部