期刊文献+

混凝土三轴循环本构关系的神经网络模拟 被引量:1

Acquiring the Triaxial Cyclic Constitutive Relationship for Concrete Using an Artificial Neural Network
下载PDF
导出
摘要 利用BP神经网络的模拟能力代替传统的力学方法,对混凝土材料的循环本构关系进行了模拟研究.首先回顾了此类模型的研究进展和构造方法,然后直接从试验数据出发,建立了混凝土三轴受压循环比例加载条件下的本构模型.试验结果和模拟结果的比较说明,该模型具有较高的精度和良好的泛化能力.本研究结果进一步说明神经网络模型适合于描述多影响因素的非线性复杂因果规律,为研究材料本构特性提供了一条新的途径. The modeling capabilities of neural networks are used as substitutes for the classic approaches to investigate the cyclical constitutive relationship of concrete. Based on reviewing of the advances in study on constitutive model and constructive methods by neural networks, a back-propagation (BP) neural network for triaxial constitutive model of concrete subjected to cyclic proportional loading is developed. A good agreement between the measured data and predicted results demonstrates that the BP neural network is able to capture significant variability inherent in the concrete samples, and has promising applications in modeling the constitutive behavior of concrete subjected cyclic proportional triaxial compression. It can be concluded that artificial neural networks have unique learning capabilities that can be used in learning complex nonlinear relationships, and offer a fundamentally different approach in modeling of constitutive behavior of materials.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2004年第3期205-211,共7页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 中国博士后科学基金 国家自然科学基金重点项目(50139010) 国家杰出青年基金(50225927).
关键词 神经网络 本构关系 循环比例加载 混凝土 neural networks constitutive relationship cyclic proportional loading concrete
  • 相关文献

参考文献5

二级参考文献11

  • 1董聪,郦正能,夏人伟,何庆芝.多层前向网络研究进展及若干问题[J].力学进展,1995,25(2):186-196. 被引量:47
  • 2Ghaboussi J, Garrett Jr JH and Wu X. Material Modeling with Neural Networks. Proceedings of the International Conference on Numerical Methods in Engineering: Theory and Applications, Swansea, U. K., 1990:70-717. 被引量:1
  • 3Gbaboussi J, Gerrett Jr JH and Wu X. Knowledge- based Modeling of Material Behavior with Neural Networks. Journal of Engineering Mechanics Division, ASCE, 117 ( 1 ),1991:132-153. 被引量:1
  • 4Wu, X. and Ghaboussi, J. Modeling Unloading mechanism and cyclic behavior of concrete with adaptive neural networks. Proceedings, Second Asian- Pacific Conference on Computational Mechanics, Sydney, Australia, 1993. 被引量:1
  • 5Ghaboussi, J., Lade, P.V. and Sidarta, D.E. Neural Networks Based Modeling in Geomechanics, Proceedings of 8^th International Conference on Computer Methods and Advances in Geomechanics, Morgantown, WV. 1994. 被引量:1
  • 6Ghaboussi J, Pecknold DA and Haj - Ali JA. Autoprogresaive Training of Neural Networks Constitutive Models, International Journal for Nmnerical Methods in Engineering, 42 (1),1998: 105-127 . 被引量:1
  • 7Ghaboussi J and Sidarta DE. New Nested Adaptive Neural Networks (NANN) for Constitutive Modeling, Computers and Geoteehnies, 22 (1), 1998:29-52. 被引量:1
  • 8Penumadu D and Rongda Zhao. Triaxial compression Behavior of Sand and Gravel Using Artificial Neural Networks (ANN),Computers and Geotechnics, 24, 1999:207- 230. 被引量:1
  • 9Ellis GW, Yao C, Zhao R and Penumadu D. Stress- strain Modeling of Sands Using Artificial Neural Networks. Journal.of Geotechnical Engineering, ASCE, 121 (5), 1995: 429-435. 被引量:1
  • 10Pernot S. and Lamarque C. - H. Application of Neural Networks to the Modeling of Some Constitutive laws, Neural Networks, 12, 1999:371- 392. 被引量:1

共引文献63

同被引文献18

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部