期刊文献+

(2+1)维Kadomtsev-Petviashvili方程解的时空分岔 被引量:17

Spatiotemporal Bifurcation of Soliton for the(2+1)-dimensional Kadomtsev-Petviashvili Equation for Recurrent Event Data
原文传递
导出
摘要 本文利用平衡点的平移和拓展的三波测试方法,着重讨论了(2+1)维KadomtsevPetviashvili方程所描述的动力系统的时空分岔问题,得到了一些新的、重要的结果. In this work, by using translation of equilibrium and extend three-wave type of ans^tz approach, we discuss the spatiotemporal bifurcation of soliton for the (2+1)- dimensional Kadomtsev-Petviashvili equation and obtain some new conclusions.
出处 《应用数学学报》 CSCD 北大核心 2013年第5期900-909,共10页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10971169 11061028)资助项目
关键词 KP方程 三波测试方法 时空分岔 平衡点 KP equation three-wave type of ansatz approach spatiotemporal bifurcation equilibrium points
  • 相关文献

参考文献1

二级参考文献12

  • 1Abolowitz, M.J., Clarkson, P.A. Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge, 1991. 被引量:1
  • 2Boyd, J.P. Peakons and coshoidal waves: traveling wave solutions of the Camassa-Holm equation. Appl, Math. Comput., 81:173-187 (1997). 被引量:1
  • 3Camassa, R., Holm, D.D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71:1661-1664 (1993). 被引量:1
  • 4Liu, S.K., Liu, S.D. Nonlinear equations in physics. Peking University Press, Beijing, 2000. 被引量:1
  • 5Liu, X.Q., Chen, H.L., Lv, Y.Q. Explicit solutions of the generalized KdV equation with higher order nonlinearity. Appl. Math. Comput., 171:315-319 (2005). 被引量:1
  • 6Liu, X.Q., Jiang, S. The secq-tanhq method and its applications. Phys. Lett. A, 298:253-58 (2002). 被引量:1
  • 7Liu, Z.R., Wang, R.Q., Jing, Z.J. Peaked wave solutions of Camassa-Holm equation. Chaos, Soliton and Fractals, 19:77-99 (2004). 被引量:1
  • 8Olver, P.J. Applications of Lie groups to differential equations. Springer-Verlag, New York, 1993. 被引量:1
  • 9Peng, Y.Z. Exact periodic wave solutions to a new Hamiltonian amplitude equation. J. Phys. Soc. Jpn., 72:1356-59 (2003). 被引量:1
  • 10Qian, T.F., Tang, M.Y. Peakons and periodic cusp waves in a generalized Camassa-Holm equation. Chaos, Soliton and Fractals, 12: 1347-1360(2001). 被引量:1

共引文献1

同被引文献83

引证文献17

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部