期刊文献+

利用多角度SAR数据实现三维成像 被引量:8

Three-dimensional Imaging with Multi-aspect SAR Data
下载PDF
导出
摘要 利用多角度SAR数据实现目标高分辨率3维成像对雷达自动目标识别具有重要价值。该文在目标散射稀疏性前提下提出了基于压缩感知的多角度SAR 3维成像方法。文章首先论证多角度SAR测量能够改善测量矩阵的互不相关性。然后根据互不相干影响因素分析,合理选择目标离散间隔构造多角度SAR测量矩阵。最后利用分段正交匹配追踪算法实现目标向量的稀疏重构。该文算法不仅改善了高度分辨率,而且克服了多角度SAR空间采样不连续导致的高旁瓣问题。实验验证了该算法的可行性和稳定性。 Carrying out 3-D imaging with multi-aspect SAR data is impressive to radar Automatic Target Recognition (ATR). This paper presents a multi-aspect SAR 3-D imaging technique based on compressive sensing, provides that the target scattering field is sparse. Firstly, it is validated that by multi-aspect SAR measurements the mutual incoherence of measurement matrix is improved. Secondly, the measurement matrix is constructed by carefully selecting the sampling interval in the space domain based on the analysis of mutual incoherence. Finally, the object sparse vector is reconstructed with Stagewise Orthogonal Matching Pursuit (StOMP) algorithm. The proposed method not only improves the resolution of elevation dimension, but also conquers the acute lobe-side resulted from incontinuous sampling. Numerical experiments are given to illustrate the effectiveness and robustness of the proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第10期2467-2474,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61171135 60972120)资助课题
关键词 多角度SAR数据 3维雷达成像 压缩感知 稀疏信号 Multi-aspect SAR Three-dimensional radar imaging Compressive Sensing (CS) Sparse signal
  • 相关文献

参考文献4

二级参考文献30

  • 1Lu Caicheng & Wang BaofaDept. of Electronic Eng., Beijing University of Aeronautics and Astronautics, Beijing 100083, China.Radar Cross Section Calculation for Wing-Body Blended Targets[J].Journal of Systems Engineering and Electronics,1991,2(2):100-108. 被引量:1
  • 2杜小勇,胡卫东,郁文贤.基于稀疏成份分析的几何绕射模型参数估计[J].电子与信息学报,2006,28(2):362-366. 被引量:8
  • 3Reigber A and Moreira A.First demonstration of airborne SAR tomography using multibaseline L-Band data[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2142-2152. 被引量:1
  • 4Fornaro G and Serafino F.Three-dimensional focusing with mulitpass SAR data[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(3):507-517. 被引量:1
  • 5Homer J and Longstaff I D.High resolution 3-D imaging via multi-pass SAR[J].IEE Proceedings,-F:Radar,Sonar,Navigation,2002,149(1):45-50. 被引量:1
  • 6She Z and Gray D A.Three-dimensional SAR imaging via multiple pass processing[C].Geo-science and Remote Sensing Symposium,IGARSS '99 Proceedings,Hamburg,Germany,1999,5:2389-2391. 被引量:1
  • 7Yong M and Konishi Y.Sparse Bayesian regression for head pose estimation[C].18th International Conference on Pattern Recognition,Hong Kong,Aug.,2006,3:507-510. 被引量:1
  • 8Esther K Y and Van M.Sparse registration for three-dimensional stress echocardiography[J].IEEE Transactions on Medical Imaging,2008,27(11):1568-1579. 被引量:1
  • 9Huang J and Huang X.Simultaneous image transformation and sparse representation recovery[C].IEEE Conference on Computer Vision and Pattern Recognition,Alaska,USA,June,2008:1-8. 被引量:1
  • 10Vaeshney K R and Cetin M.Sparse representation in structured dictionaries with application to synthetic aperture radar[J].IEEE Transactions on Signal Processing,2008,56(8):3548-3561. 被引量:1

共引文献35

同被引文献75

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部