期刊文献+

反平面电弹性偏折裂纹的一个解析解 被引量:2

AN ANALYTICAL SOLUTION FOR PROBLEM OF ANTIPLANE KINK CRACKS IN PIEZOELECTRIC MATERIALS
原文传递
导出
摘要 该文用复变函数方法分析了压电材料反平面偏折裂纹问题,给出了问题的解析解,讨论了分支裂纹尖端的渐进场与奇异性。利用分支裂纹尖端扩展的能量释放率与J积分,研究了主支裂纹扩展方向,结果表明:压电材料Ⅲ型裂纹扩展时的分支角0,即裂纹扩展沿着主支裂纹的延长线方向。在理论上证明了前期对压电材料反平面裂纹的直线扩展假设及其相应结果的正确性。 The problem of anti-place kink cracks in the piezoelectric materials is analyzed by using complex functions. The coupled filed and intensity factors of the branching crack tip are also studied. Using energy release rate and J integral for the branching crack tip, the main crack growth path is considered. Research has shown that the deflection angle of anti-place crack propagation in the piezoelectric materials is zero, in other words Z = O. It is proved theoretically that the assumptions and corresponding conclusions of piezoelectric materials plane crack-growth by a straight line are correct in earlier period.
出处 《工程力学》 EI CSCD 北大核心 2013年第9期76-80,共5页 Engineering Mechanics
基金 山东省自然科学基金项目(Y2007A31) 中央高校基本科研业务费专项资金项目(12CX06075A)
关键词 压电材料 偏折裂纹 强度因子 能量释放率 J积分 piezoelectric materials kink crack intensity factor energy release rate J integral
  • 相关文献

参考文献13

  • 1Pak Y E. Crack extension force in a piezoelectric material [J]. Journal of Applied Mechanics, 1990, 57: 647- 653. 被引量:1
  • 2Chen T. The rotation of a rigid ellipsoidal inclusion embedded in an piezoelectric medium [J]. Int. J. Solids Structure, 1993, 30: 1983-1995. 被引量:1
  • 3Suo Z, Kuo C M, Barnett D M, Willims J R., Fracture mechanics for piezoelectric ceramics [J]. J Mech Plays Solids, 1992, 40: 739-765. 被引量:1
  • 4Hou Mishan, Qian Xiuqing, Bian Wenfen. Energy release rate and bifurcation angles of piezoelectric materials with antiplane moving crack [J]. InternationalJournal of Fracture, 2001, 107(4): 297-306. 被引量:1
  • 5侯密山,杨秀娟.集中载荷作用下的不同压电材料反平面应变状态的共圆弧界面裂纹问题[J].工程力学,1998,15(1):110-114. 被引量:3
  • 6刘新民,侯密山.压电材料渗透型反平面界面裂纹的奇异因子[J].工程力学,2000,17(2):18-22. 被引量:12
  • 7MeHenry K D, Koepke B G. Electric field effects on subcritical crack growth in PZT [J]. Frac Mech Ceram., 1983, 5: 337-352. 被引量:1
  • 8Park S B, Sun C T. Fracture criteria for piezoelectric ceramics [J]. Journal of the American Ceramic Society, 1995, 78: 1475- 1480. 被引量:1
  • 9Lo K K. Analysis of branched cracks [J]. Journal of Applied Mechanics, 1978, 45: 797-802. 被引量:1
  • 10Zhu T, Yang W. Kink crack growth in ferroelectrics [J]. International Journal of Solids and Structures, 1999, 36: 5013-5027. 被引量:1

二级参考文献3

共引文献13

同被引文献19

  • 1闫相桥.内部压力作用下矩形板中源于椭圆孔的分支裂纹应力强度因子的一种数值分析[J].计算力学学报,2005,22(6):711-715. 被引量:2
  • 2E.T. Ooi,C. Song,F. Tin-Loi,Z.J. Yang.Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements[J].Engineering Fracture Mechanics.2012 被引量:1
  • 3Ean Tat Ooi,Chongmin Song,Francis Tin‐Loi,Zhenjun Yang.Polygon scaled boundary finite elements for crack propagation modelling[J].Int J Numer Meth Engng.2012(3) 被引量:1
  • 4K.C. Jajam,H.V. Tippur.An experimental investigation of dynamic crack growth past a stiff inclusion[J].Engineering Fracture Mechanics.2011(6) 被引量:1
  • 5Chongmin Song,Francis Tin-Loi,Wei Gao.A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges[J].Engineering Fracture Mechanics.2010(12) 被引量:1
  • 6Jun Lei,Qingsheng Yang,Yue-Sheng Wang,Chuanzeng Zhang.An investigation of dynamic interaction between multiple cracks and inclusions by TDBEM[J].Composites Science and Technology.2009(7) 被引量:1
  • 7Yuhai Yan,Si-Hwan Park.An extended finite element method for modeling near-interfacial crack propagation in a layered structure[J].International Journal of Solids and Structures.2008(17) 被引量:1
  • 8Z.J. Yang,A.J. Deeks,H. Hao.Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach[J].Engineering Fracture Mechanics.2006(5) 被引量:1
  • 9Zhenjun Yang.Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method[J].Engineering Fracture Mechanics.2006(12) 被引量:1
  • 10R.C. Williams,A.-V. Phan,H.V. Tippur,T. Kaplan,L.J. Gray.SGBEM analysis of crack–particle(s) interactions due to elastic constants mismatch[J].Engineering Fracture Mechanics.2006(3) 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部