期刊文献+

矩形压电体中反平面裂纹的电弹性场 被引量:2

Electroelastic Field for an Anti-Plane Crack in a Rectangular Piezoelectric Body
下载PDF
导出
摘要 基于线性压电理论,本文获得了含有中心反平面裂纹的矩形压电体中的奇异应力和电场。利用Fourier积分变换和Fourier正弦级数将电绝缘型裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fred-holm积分方程。获得了裂纹尖端应力、应变、电位移和电场的解析解,求得了裂纹尖端场的强度因子及能量释放率。分析了压电矩形体的几何尺寸对它们的影响。结果表明,对于电绝缘型裂纹,裂纹尖端附近的各个场变量都具有-1/2阶的奇异性,能量释放率与电荷载的方向及大小有关,并且有可能为负值。 The singular stress and electric fields in a rectangular piezoelectric body containing a center anti-plane crack are obtained. Fourier transforms and Fourier sine series are used to reduce the mixed boundary value problems of the crack, which is assumed to be impermeable, to dual integral equations. The solution of the dual integral equations is then expressed in terms of Fredholm integral equations of the second kind. Expressions for stresses, strains, electric displacements and electric fields in the vicinity of the crack tip are derived. Also obtained are the field intensity factors and the energy release rates. Numerical results obtained show that the geometry of the rectangular body have significant influence on the field intensity actors and the energy release rates. All the field variables near the crack tip possess the inverse square root singularity, and the energy release rate can have negative values depending on the direction, the magnitude, and the type of the electrical loads.
出处 《力学季刊》 CSCD 北大核心 2006年第1期45-51,共7页 Chinese Quarterly of Mechanics
关键词 矩形压电体 反平面裂纹 电绝缘 积分变换 应力强度因子 能量释放率 rectangular piezoelectric body anti-plane crack impermeable integral transform intensity factors energy release rates
  • 相关文献

参考文献10

  • 1Shindo Y, Narita F, Tanaka K. Electroelstic intensification near anti-plane shear crack in orthotropic piezoelectric ceramic strip[J].Theoretical and Applied Fracture Mechancis, 1996, 25:65-71. 被引量:1
  • 2Deeg W F. The analysis of dislocation, crack, and inclusion problems in piezoelectric solid [D]. [Ph.D. Thesis]. Stanford University,1980. 被引量:1
  • 3Pak Y E. Crack extension force in a piezoelectric material[J]. Journal of Applied Mechanics, 1990, 57:647 - 653. 被引量:1
  • 4Zhang T Y, Tong P. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J]. International Journal of Solids and Structs,1992, 29(19) : 2403 - 2419. 被引量:1
  • 5Zhong Z, Meguid S A. Analysis of a circular arc-crack in piezoelectric materials[J]. International Journal of Fracture, 1997, 84:143 -158. 被引量:1
  • 6Narita F, Shindo Y. Layered piezoelectric medium with interface crack under anti-plane shear[J]. Theoretical and Applied Fracture Mechancis, 1998, 30: 119-126. 被引量:1
  • 7李显方,范天佑.压电陶瓷板中非电渗透型反平面裂纹的电弹性场[J].应用数学和力学,2002,23(2):179-187. 被引量:4
  • 8Kwon S M, Lee K Y. Analysis of stress and electric fields in a rectangular piezoelectric body with a center crack under anti-plane shear loading[J]. International Journal of Solids and Structs, 2000, 37:4859- 4869. 被引量:1
  • 9Wang B L, Mai Y W. On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics[J]. International Journal of Engineering Science, 2003, 41 : 633 - 652. 被引量:1
  • 10Chang S S. The solution of a rectangular orthotropic sheet with a central crack under anti-plane shear[J]. Engineering Fracture Mechanics, 1985, 22 : 253 - 261. 被引量:1

二级参考文献2

共引文献3

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部