期刊文献+

基于纳米压痕试验的316L不锈钢表面钛、TiN薄膜结合性能的有限元模拟 被引量:3

Finite Element Simulation of Bonding Properties for Ti,TiN Films on 316L Stainless Steel Based on Nanoindentation Experiments
下载PDF
导出
摘要 通过纳米压痕试验测得316L不锈钢基体、纯钛薄膜与TiN薄膜的弹性模量、硬度和压痕过程载荷-位移曲线;采用ANSYS有限元分析软件建立纳米压痕试验的有限元模型,通过量纲分析方法推导出上述材料在纳米尺度下的双线性应力-应变关系,并计算得到相应载荷-位移曲线;利用有限元模型分析了两种薄膜/基体间的结合性能。结果表明:纳米压痕试验和有限元模拟得到的载荷-位移曲线吻合较好,利用模型定性判断TiN薄膜与基体的结合性能优于纯钛薄膜的,与划痕试验结果相符,验证了此方法的可行性。 The modulus, hardness and indentation load-displacement curves of 316L stainless steel substrate, Ti film and TiN film were obtained by nanoindentation tests. The bilinear stress and strain relation of above materials was deduced by ANSYS finite element simulation and dimensional analysis, and then the corresponding indentation load-displacement curves obtained by computation and the bonding property of these two films/substrate systerms were analysed by the model. The results show that the identation load-displacement curves from computation were agreement well with that from nanoindentation tests. It was qulitatively indicated that the bonding property between TiN film and substrate was better than that between Ti film and substrate, which fitted the stratch test result well, proving the validity of the proposed method.
出处 《机械工程材料》 CAS CSCD 北大核心 2013年第9期90-95,共6页 Materials For Mechanical Engineering
基金 国家自然科学基金资助项目(11172195)
关键词 薄膜 纳米压痕 有限元 应力应变关系 film nanoindentation finite element model (FEM) stress-strain relation
  • 相关文献

参考文献10

二级参考文献60

共引文献12

同被引文献27

  • 1丁阳喜,周立志.激光表面处理技术的现状及发展[J].热加工工艺,2007,36(6):69-72. 被引量:57
  • 2HONG S I,HILL M A. Microstructure and conductivity ofCu-Nb microcomposites fabricated by the bundling anddrawing process[J]. Scripta Materialia> 2001, 44(10) : 2509-2515. 被引量:1
  • 3POPOVA E N,POPOV V V,ROMANOV EP, et al. Effectof deformation and annealing on texture parameters ofcomposite Cu-Nb wire[J]. Scripta Materialia, 2004,51(7):727-731. 被引量:1
  • 4VIDAL V,THILLY L,VAN PETEGEM S. Plasticity ofnanostructured Cu-Nb based wires : strengtheningmechanisms revealed by in situ deformation under neutrons[J]. Scripta Materialia,2009, 60 (3) : 171-174. 被引量:1
  • 5NAYEB-HASHEMI H,VAZIRI A, ZIEMER K. Wearresistance of Cu-18% Nb (P/M) composites [J]. MaterialsScience and Engineering: A,2008,478: 390-396. 被引量:1
  • 6BOTCHAROVA E,FREUDENBERGER J, SCHULTZ L.Mechanical and electrical properties of mechanically alloyednanocrystalline Cu-Nb alloys [J]. Acta Materialia. 2006,54:3333-3341. 被引量:1
  • 7SANDIM M J R,SANDIM H R,SHIGUE C Y,et al.Annealing effects on the magnetic properties of amultifilamentary Cu-Nb composite [ J ]. Supercond SciTechnol, 2003’ 16: 307-313. 被引量:1
  • 8HAN K,EMBURY J D,SIMS J R,et al. The fabrication,properties and microstructure of Cu-Ag and Cu-Nb compositeconductors[J]. Materials Science and Engineering: A,1999,267: 99-114. 被引量:1
  • 9STAMOPOULOS D,PISSAS M, SANDIM M J R, et al.Proximity induced superconductivity in bulk Cu-Nbcomposites: the influence o. interface’s structural quality[J].Physica C: Superconductivity, 2006,442 (1); 45-54. 被引量:1
  • 10THILLY L,VeRON M,LUDWIG 0,et al. High-strengthmeterials: in-situ investigation of dislocation behaviour in Cu-Nb multifilamentary nanostructure composites [J].Philosophical Magazine: A, 2002, 82: 925-942. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部