期刊文献+

在线自适应选择子空间的红外目标跟踪方法 被引量:2

IR object tracking method via online adaptive subspace selection
下载PDF
导出
摘要 传统基于子空间的目标跟踪方法以能量大小为准则建立子空间,没有考虑目标与背景之间的鉴别性,当两者间存在近似外观分布时将降低跟踪系统的性能。考虑到红外图像信噪比、对比度不高等特点,提出了一种以评估目标与背景间可区分能力为基础的子空间选择方法,并将该方法有效嵌入到粒子滤波跟踪框架下实现对红外目标的鲁棒跟踪。首先利用采样粒子分布以及当前目标状态,综合衡量粒子与目标间的特征分布差异和粒子逼近目标的程度来评估不同子空间的鉴别性,然后选择鉴别性最优的子空间作为下帧的跟踪子空间,从而实现对红外目标进行子空间自适应选择的鲁棒跟踪。对多个复杂场景下的目标跟踪实验表明所提出的算法要优于传统基于增量子空间学习的跟踪算法。 The subspace constructing strategy of classic subspace-based tracking schemes is to select appropriate subspaces with maximum energy, in this strategy the discriminability between the target and background is neglected, so when the target and background have similar appearance the tracking system's performance may be degenerated. To solve the problems of IR image's low SNR and low contrast, a novel subspace selecting method was proposed based on analyzing the discriminability between the target and background. The IR object tracking process was realized by the particle filter with the provided subspace selecting strategy. In this case, based on the prior knowledge of the particles distributions and the target state, different subspace' s tracking ability by considering both the feature difference and the particles' approximation level to the target was estimated firstly, then the optimal subspaces were selected to realized the IR target tracking. Experiments on several complex scenes indicate that the proposed algorithm has better performance than the classic one.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第9期2579-2583,共5页 Infrared and Laser Engineering
基金 国家自然科学基金(61203272 41275027) 安徽省自然科学基金(10040606Q56 1308085MF82) 安徽高校省级自然科学研究(KJ2011A252) 淮北市科技计划(2010211)
关键词 红外目标跟踪 子空间选择 粒子滤波 鉴别分析 IR target tracking subspace selecting particle filter discriminant analysis
  • 相关文献

参考文献3

二级参考文献24

共引文献20

同被引文献306

  • 1BAI A, ALAM M S. Automatic target tracking in FLIR image sequences using intensity variation function and template modeling[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(5): 1846-1852. 被引量:1
  • 2PARAVATI G, SANNA A, PRALIO B, et al.. A genetic algorithm for target tracking in FLIR video sequences using intensity variation function[J].IEEE Transactions on Instrumentation and Measurement, 2009, 58(10): 3457-3467. 被引量:1
  • 3PARAVATI G, ESPOSITO S. Relevance-based template matching for tracking targets in FLIR imagery[J]. Sensors, 2014, 14(8): 14106-14130. 被引量:1
  • 4LAMBERTI F, SANNA A, PARAVATI G. Improving robustness of infrared target tracking algorithms based on template matching[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1467-1480. 被引量:1
  • 5LAMBERTI F, SANNA A, PARAVATI G, et al.. IVF3: exploiting intensity variation function for high-performance pedestrian tracking in forward-looking infrared imagery [J]. Optical Engineering, 2014, 53(2): 023105-023105. 被引量:1
  • 6LAMBERTI F, SANTOMO R, SANNA A, et al.. Intensity variation function and template matching-based pedestrian tracking in infrared imagery with occlusion detection and recovery[J]. Optical Engineering, 2015, 54(3): 033106. 被引量:1
  • 7Terravic Outdoor House Surveillance IR Database(2014-05-20). http://www.terravic.com/research/mot-ion.htm. 被引量:1
  • 8OTCBVS Benchmark Dataset Collection[EB]. (2014-05-20). http://www.cse.ohio-state.edu/otcbvs-bench/. 被引量:1
  • 9WU Y, LIM J, YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition 2013, 2013: 2411-2418. 被引量:1
  • 10ZHANG K, ZHANG L, YANG M H. Real-time compressive tracking[C].Computer Vision-ECCV. Springer Berlin Heidelberg, 2012: 864-877. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部