期刊文献+

基于核密度估计的红外目标提取方法 被引量:11

INFRARED TARGET EXTRACTION METHOD BASED ON KERNEL DENSITY ESTIMATION
下载PDF
导出
摘要 提出了有效集成灰度、空间关系和局部标准差信息的新的核密度估计方案,据此设计了一种基于核密度估计的红外目标提取方法,即首先将图像分块,根据块的统计特征获得包含整个目标的约束区域;然后对目标约束区域和相应的背景采样区域进行核密度估计,这里背景采样区域指的是围绕着目标但又不包含目标的图像区域,由目标约束区域向外扩展而形成;最终通过对两种核密度估计对比的阈值判断即能获得所提取的目标.实验验证了所提出的算法简单有效. A new kernel density estimation scheme which incorporates gray values, spatial relation and local standard deviations information effectively was proposed. With this scheme, an infrared target extraction method based on kernel density estimation was designed. Firstly, the entire image Was divided into blocks and the confined region that contained the entire target was obtained based on the statistical feature of each blocks. Secondly, the kernel density estimations of the confined region and the corresponding background sample region were estimated. Here, the background sample region is a surrounding image region of the target, but it doesnt contain the target. It is enlarged from the confined target region. Finally, the target was extracted with the contrast of two kernel density estimations under a given threshold. The experimental results show that the proposed method is simple and efficient.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2006年第6期434-438,共5页 Journal of Infrared and Millimeter Waves
基金 国防973项目基金(51323020203-2) 航空科学基金(04F57004)资助项目
关键词 目标提取 统计特征 核密度估计 局部标准差 target extraction statistical feature kernel density estimation local standard deviation
  • 相关文献

参考文献6

二级参考文献11

  • 1孙伟,夏良正.一种基于形态学的红外目标分割方法[J].红外与毫米波学报,2004,23(3):233-236. 被引量:21
  • 2Lee J S, Yang M C K. Threshold selection using estimates from truncated normal distribution[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989,19(2):422-429. 被引量:1
  • 3Kamgar-Parsi B, Kamgar-Parsi B. Improved image thresholding for object extraction in IR images[A]. Proceedings of 2001 International Conference on Image Processing[C]. Thessaloniki,Greece. 2001,1,758-761. 被引量:1
  • 4Zhang H, Zhao B J, Zhu M Y, et al. Detecting and tracking of multiple targets in IR image sequences in heavy background[A]. Proceedings of 2001 CIE International Conference on Radar[C]. Beijing, 2001. 1141-1143. 被引量:1
  • 5OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Trans. Syst, Man, Cybern., 1978 SMC-8:62-66. 被引量:1
  • 6KAPUR J N, SHHOO P K, WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision Graphics Image Processing, 1985,29:273-285. 被引量:1
  • 7TAO Wen-Bing, TIAN Jin-Wen, LIU Jian. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm [J]. Pattern Recognition Letters, 2003,24(16):3069-3078. 被引量:1
  • 8WU Z, LEAHY R. An optimal graph theoretic approach to data clustering:theory and its aplication to image segmentation [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1993,15(11):1101-1113. 被引量:1
  • 9SHI J, MALIK J. Motion segmentation and tracking using normalized cuts [C]. Proc. Int'l Conf. Computer Vision, 1998,1154-1160. 被引量:1
  • 10盛文,邓斌,柳健.一种基于多尺度距离像的红外小目标检测方法[J].电子学报,2002,30(1):42-45. 被引量:30

共引文献7

同被引文献116

引证文献11

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部