期刊文献+

Hadoop下并行遗传算法研究及在应急设施选址中的应用 被引量:4

Research on a Parallel Genetic Algorithm in Hadoop and Application in the Site Selection of Emergency Facilities
原文传递
导出
摘要 随着云计算的出现,大数据的概念也随之产生。自然灾害日趋增多,要求应急设施的部署规模不断扩大,这时,如何有效进行大规模应急设施的选址成为应急管理系统的关键。因此,提出一种改进的并行遗传算法并在Hadoop平台上编程实现,并应用于求解应急设施选址问题的集合覆盖模型,达到求解应急设施选址的目的。试验结果表明,改进的并行遗传算法不管在获取全局最优解上还是在求解大规模应急设施选址的时效性上都优于原有算法,是一种云计算坏境下有效的应急设施选址问题求解算法。 With the development of cloud computing, big data emerges. The scale of first-aid facilities must be expanded because of more and more natural disasters. At the same time, it is the key of emergency management system that how large-scale site selection is finished. So a parallel genetic algorithm is presented and coded in hadoop platform. It is used to solve the set covering model of the site selection of emergency facilities to finally settle that. Testing resuh proves that the two aspects of the improved algorithm are better than before. One aspect is getting globally optimal solution, the other is more time efficiency. It is effective to solve the site selection of emergency facilities in cloud computing.
作者 张刚红
出处 《互联网天地》 2013年第8期11-14,18,共5页 China Internet
关键词 云计算 大数据 应急设施选址 HADOOP平台 遗传算法 cloud computing, big data, site selection of emergency facilities, hadoop platform, genetic algorithm
  • 相关文献

参考文献4

二级参考文献39

  • 1陈志宗,尤建新.重大突发事件应急救援设施选址的多目标决策模型[J].管理科学,2006,19(4):10-14. 被引量:90
  • 2米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128. 被引量:13
  • 3FOSTER I, YONG ZHAO, RAICU I, et al. Cloud computing and grid computing 360-degree compared[C] // Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC: IEEE Computer Society, 2008:1 - 10. 被引量:1
  • 4ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: A Berkeley view of cloud eomputing[EB/OL]. [2010 -01 -25]. http://www, eecs. berkeley, edu/Pubs/TechRpts/20Og/EECS-20og- 28. pdf. 被引量:1
  • 5BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: the google cluster architecture[J]. IEEE Micro, 2003, 23(2) : 22 - 28. 被引量:1
  • 6CHIEN A, CALDER B, ELBERT S, et al. Entropia: Architecture and performance of an enterprise desktop grid system[J]. Journal of Parallel and Distributed Computing, 2003, 63(5):597-610. 被引量:1
  • 7KIM J S, NAM B, MARSH M, et al. Creating a robust desktop grid using peer-to-peer services[EB/OL]. [ 2009 - 10 - 16]. ftp://ftp. cs. umd. edu/pub/hpsl/papers/papers-pdf/ngs07.pdf. 被引量:1
  • 8ABRAHAM A, BUYYA R, NATH B. Nature's heuristics for scheduling jobs on computational grids[ C]// The 8th International Conference on Advanced Computing and Communications. New Delhi: Tata McGraw-Hill Publishing, 2000:45-52. 被引量:1
  • 9DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[ C]//Proceedings of the 6th Symposium on Operating System Design and Implementation. New York: ACM, 2004:137 - 150. 被引量:1
  • 10The CLOUDS Lab. Gridsim[ EB/OL]. [ 2010 - 06 - 25]. http:// www. cloudbus. org/gridsim/. 被引量:1

共引文献291

同被引文献19

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部