期刊文献+

基于BP神经网络的Al-Cu-Mg-Ag合金欠时效高温力学性能研究 被引量:2

Research on High Temperature Mechanical Properties of Underaged Al-Cu-Mg-Ag Alloy Based on BP Neural Network
下载PDF
导出
摘要 采用常温拉伸实验,研究了热暴露对欠时效态Al-Cu-Mg-Ag合金力学性能与微观组织的影响。使用BP神经网络方法,建立了热暴露温度、时间与合金力学性能的模型。基于实验相关数据,使用建立的BP神经网络模型对合金的力学性能进行预测。预测结果表明,BP神经网络能够很好的反映工艺参数与力学性能的关系,预测精度高,具有很强推广能力。 The effect of long thermal exposure on the mechanical properties and microstructures of an underaged Al-Cu-Mg-Ag alloy was studied by tensile test at room temperature. Using BP neural network method, a model of the heat exposure temperature, time and alloy mechanical properties was established. Based on experimental data, the mechanical properties of the alloy were forecasted by the BP neural network model. The results show that the BP neural network can better reflect the relationship between process parameters and experiment results with a high prediction accuracy and a strong generalization ability.
作者 周岚
出处 《铸造技术》 CAS 北大核心 2013年第9期1147-1150,共4页 Foundry Technology
关键词 AL-CU-MG-AG合金 BP神经网络 欠时效 力学性能 AI-Cu-Mg-Ag alloy BP neural network Underaged Mechanical properties
  • 相关文献

参考文献9

二级参考文献92

共引文献64

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部