期刊文献+

改进的多光谱双边滤波图像融合 被引量:8

Improved multispectral bilateral filter video fusion algorithm
原文传递
导出
摘要 针对低照度或夜晚条件下彩色图像信噪比低、图像细节不够清晰;而近红外相机在该条件下能够得到纹理、边缘等细节信息丰富的图像,但缺乏色彩信息的问题,提出一种改进的双边滤波图像融合算法,实现在低照度条件下得到成像清晰的彩色图像。算法对双边滤波的核函数重新设计,用幂函数取代指数函数,取消人为设计参数;在像素相似度项选择上,采用不同源图像中像素间差异大的差值作为相似度项,避免了融合图像的纹理、边缘被平滑掉。应用本文算法及其他几种典型的融合算法对低照度下采集的彩色图像及近红外图像进行测试,实验结果表明,该算法同其他融合算法相比得到的彩色图像清晰度更高,颜色更贴近源图像,且运算速度要比Eric等人提出的双边滤波融合算法快6倍多。 In low light or night conditions,the signal-to-noise ratio is low and the details are not clear in color images.Although near infrared cameras can get image with rich texture,the edge details lacks color under this condidtion.In order to get a clear color image,we propose an improved bilateral-filter image-fusion algorithm in low light conditions in this paper.In the algorithm,the kernel function is re-designed using the power function to replace the exponential function,and canceling the design parameter.In order to avoid image texture and edge smoothing,the large difference of pixels is used as a pixel similarity in the color image and near IR image for image fusion.By using of a color image and an infrared image,this method and several other typical fusion methods are tested under low light condition.The experimental results show that the color images have higher definition compared with other fusion algorithm.The color is more close to the source image.The computation speed is more than 6 times compared faster to the Eric.P algorithm.
作者 吴川 杨冬
出处 《中国图象图形学报》 CSCD 北大核心 2013年第9期1170-1175,共6页 Journal of Image and Graphics
基金 中国科学院航空光学成像与测量重点实验室开放课题(Y2HC1SR125)
关键词 双边滤波 图像融合 核函数 近红外图像 bilateral filter video fusion kernel function near IR
  • 相关文献

参考文献3

二级参考文献25

  • 1PAN Zi wei, WU Chao ying Department of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, P.R.China.A Fuzzy Neural Network for Fault Pattern Recognition[J].International Journal of Plant Engineering and Management,2001,6(3):143-148. 被引量:1
  • 2Zhong Zhang,Blum R S A.Categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J].Proceedings of the IEEE,1999,87(8):1315-1326. 被引量:2
  • 3Nikolov S G,Bull D R,Canagarajah C N,Halliwell M,Wells P N T.2-D image fusion by multiscale edge graph combination[A].Proceedings of the Third International Conference on Information Fusion[C].Paris,France:PTICIF,2000.1.MoD3-16-MoD3-22. 被引量:2
  • 4Nikolov S G,Bull D R,Canagarajah C N,Halliwell M,Wells P N T.Image fusion using a 3-D wavelet transform[A].Seventh International Conference on Image Processing And Its Applications[C].Manchester,UK:SICIPA,1999.1.235-239. 被引量:2
  • 5Xue Z,Blum R S,Li Y.Fusion of visual and IR images for concealed weapon detection[A].Proceedings of the Fifth International Conferenceon Information Fusion[C].Annapolis,USA:2002,PFICIF,2.1198-1205. 被引量:2
  • 6P J Burt,R J Kolczynski.Enhanced image capture through fusion[A].Proceedings 4th International Conference on Computer Vision[C].Berlin,Germany:PICCV,1993.173-182. 被引量:1
  • 7http://fizbin.eecs.lehigh.edu/SPCRL/IF. 被引量:1
  • 8杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:166
  • 9A Lorette,H Shekarforoush,J Zerubia.Super-resolution with adaptive regularization[ A].Proc of the IEEE International Conference on Image Processing[C].Santa Barbara,CA,1997.Volume I.169-172. 被引量:1
  • 10Z Cvetkovic,M Vetterli.Discrete-time wavelet extrema representation:Design and consistent reconstruction[J].IEEE Trans on Signal processing,1995,43(3):681-693. 被引量:1

共引文献162

同被引文献49

  • 1曾朝阳,曾德贤,赵继广.CMOS图像传感器新技术综述[J].光学仪器,2005,27(2):86-89. 被引量:4
  • 2闫莉萍,刘宝生,周东华.一种新的图像融合及性能评价方法[J].系统工程与电子技术,2007,29(4):509-513. 被引量:29
  • 3廉蔺,张军,李国辉.方向性小波理论应用特性分析[J].计算机工程与科学,2007,29(7):51-54. 被引量:4
  • 4Li S S, Zhao B J, Tang L B.SAR and visible image fusion based on local non-negative matrix factorization[J].Electronic Measurement & Instruments, 2009, 12(4):263-266. 被引量:1
  • 5Han N L, Hu J X, Zhang W.Multi-spectral and SAR Images fusion via mallat and àtrous wavelet transform[J].IEEE Digital Object Identifier, 2010, 11(4):1-4. 被引量:1
  • 6SHUTAO LI, HAITAO YIN, And LEYUAN FANG.Remote sensing image fusion via sparse representations over learned dictionaries[J].IEEE Transaction on Geoscience and Remote Sensing, 2013, 51(9):4779-4789. 被引量:1
  • 7ELAD MICHAEL And AHARON MICHAL.Image Denoising Via Sparse and Redundant Representations Over Learned Dic-tionaries[J].IEEE Transactions on Image Processing, 2006, 15(12):3736-3745. 被引量:1
  • 8Xiaobo Qu, Di Guo, Bende Ning, Yingkun Hou.Under sampled MRI reconstruction with patch-based directional wavelets[J].Magnetic Resonance Imaging, 2012, 12(9):964-977 [9]Ioannidou S, Karathanassi V.Investigation of the dual-tree complex and shift-invariant discrete wavelet transforms on quickbird image fusion[J].IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):166-170. 被引量:1
  • 9Fadili MJ, Starck JL, Murtagh F.Inpainting and zooming using sparse representations[J].Computer Journal, 2009, 52(1):64-79. 被引量:1
  • 10Qu X, Guo D, Ning B, et al.Undersampled MRI reconstruction with patch-based directional wavelets[J].Magnetic Resonance Imaging, 2012, 30(7):964-977. 被引量:1

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部