期刊文献+

基于差异演化的多聚焦图像融合算法

Fusion of Multi-focus Images Based on Differential Evolution Algorithm
下载PDF
导出
摘要 多聚焦图像融合就是综合和处理多个源图像的信息,来获取对同一场景或物体的更为准确、更为全面、更为可靠的图像描述.对于可见光成像系统而言,特别是含有长焦距的光学镜头,对景深有一定的限制.因此,将场景中的所有物体都成像清晰是很难的,这个问题采用多聚焦图像融合技术可以很好解决.通过提出一种基于差异演化的多聚焦图像融合算法,首先将源图像进行分块,然后用清晰度评价函数比较对应图像块的清晰度,选择清晰度高的作为清晰图像块,最终重构融合图像.该方法的积极意义在于,优化后的图像块比没被优化的使用效果更佳.实验结果表明,从定量和视觉两方面评价,都明显优于遗传算法和其他传统的图像融合方法. Image fusion means to synthesize multiple source images and get more accurate, more comprehensive and more reliable information about same scene or object. For visible light imaging system, optical lenses, particularly those with long focal lengths, suffer from the problem of limited depth of field. Consequently, it is often difficult to obtain good focus for all objects in the picture. But it can be solved by multi-focus image fusion. In this paper, a novel optimal method for multi-focus image fusion using differential evolution algorithm is presented. The source images are first decomposed into blocks. Then, the sharper blocks are selected by employing a sharpness criterion function. The selected blocks are finally combined to construct the fused image. The motivation of the proposed method lies in the fact that an optimized block size could be more effective than a fixed block size. Experimental results show that the proposed method outperforms genetic algorithm based method and other traditional methods in terms of both quantitative and visual evaluations.
作者 马文娟 许峰
出处 《合肥学院学报(自然科学版)》 2013年第1期29-32,共4页 Journal of Hefei University :Natural Sciences
基金 2011年度安徽理工大学青年教师科学研究基金项目资助
关键词 多聚焦图像融合 差异演化 遗传算法 Multi-focus image fusion dfferential evolution genetic algorithm
  • 相关文献

参考文献12

  • 1Aslantas V,Pham D T. Depth from Automatic Defocusing[J].Optics Express,2007.1011-1023. 被引量:1
  • 2Aslantas V. A Depth Estimation Algorithm with A Single Image[J].Optics Express,2007.5024-5029. 被引量:1
  • 3Simone G,Farina A. Image Fusion Techniques for Remote Sensing Applications[J].Information Fusion,2003,(03):3-15. 被引量:1
  • 4Burt P T,Andelson E H. The Laplacian Pyramid as A Compact Image Code[J].IEEE Transactions on Communications,1983.532-540. 被引量:1
  • 5Toet A. Multiscale Contrast Enhancement with Applications to Image fusion[J].Optical Engineering,2001.1026-1031. 被引量:1
  • 6Burt P T,Andelson E H. Merging Images through Pattern Decomposition[J].Proceedings of Spie,2000.173-181. 被引量:1
  • 7Li S,Kwok J T,Wang Y. Multifocus Image Fusion Using Artificial Neural Networks[J].Pattern Recognition Letters,2002.985-997. 被引量:1
  • 8谢晓锋,张文俊,张国瑞,杨之廉.差异演化的实验研究[J].控制与决策,2004,19(1):49-52. 被引量:70
  • 9Storn R,Price K. Differential Evolution A Simple and Efficient Heuristic for Global Optimizat ion over Continuous Spaces[J].Journal of Global Optimization,1997,(04):341-359. 被引量:1
  • 10Storn R,Prie K. Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J].Journal of Global Optimization,2006.341-359. 被引量:1

二级参考文献13

  • 1[1]Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings and constrained parameter optimization[J]. Evolutionary Computation, 1999, 7 (1): 19-44. 被引量:1
  • 2[2]Whitley D. An overview of evolutionary algorithms: Practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831. 被引量:1
  • 3[3]Fogel L J, Owens A J, Walsh M J. Artificial Intelligence Through Simulated Evolution[M]. Chichester: John Wiley, 1996. 被引量:1
  • 4[4]Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systems nach Prinzipien der Biologischen Evolution[M]. Stuttgart: Frommann-Holzboog Verlag, 1973. 被引量:1
  • 5[5]Holland J H. Adaptation in Natural and Artificial Systems[M].Ann Arbor:University of Michigan Press, 1975. 被引量:1
  • 6[6]De Jong K A. The analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975. 被引量:1
  • 7[7]Storn R. Differential evolution design of an IIR-filter [A]. IEEE Int Conf on Evolutionary Computation[C]. Nagoya,1996. 268-273. 被引量:1
  • 8[8]Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359. 被引量:1
  • 9[9]Pahner U, Hameyer K. Adaptive coupling of differential evolution and multiquadrics approxima-tion for the tuning of the optimization process [J]. IEEE Trans on Magnetics, 2000, 36(4): 1047-1051. 被引量:1
  • 10[10]Cheng S L, Hwang C. Optimal approximation of linear systems by a differential evolution algorithm [J]. IEEE Trans on Systems, Man and Cybernetics - Part A, 2001, 31(6): 698-707. 被引量:1

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部