期刊文献+

融合CCCTI码和谱系聚类的仿射配准 被引量:1

Affine registration based on CCCTI and hierarchical clustering
原文传递
导出
摘要 针对复杂场景中目标由于成像畸变、部分遮挡或局部缺失难于识别的问题,提出一种新的仿射配准算法。首先给出了CCCTI码(cyclic code of corner and tangent and inflexion points)的定义,该码易于确定模型和目标轮廓上关键特征点的对应关系;其次利用关键特征点对轮廓进行分段,根据对应子曲线段的两端点及其形心估算变换矩阵,再引入谱系聚类法对所有估算矩阵进行聚类,降低最终估算矩阵的误差,且使算法适用于部分遮挡或局部缺失,提高算法的鲁棒性;最后计算能够聚类的对应子曲线段的总形心,并利用总形心与对应子曲线段的两端点再次估算变换矩阵,提高配准的精度。理论分析和实验结果均表明,该算法能有效地进行仿射配准,并能处理部分遮挡或局部缺失。 It is difficult to recognize objects when they are distorted and partially occluded or broken.In order to solve this problem,a new registration algorithm is proposed in this paper.First,we define the CCCTI(cyclic code of corner and tangent and inflexion points) of a planar curve.This code can easily determine the corresponding relation of the key feature points between the model and target contour.Second,contours are segmented by using the key feature points,and the transformation matrix is estimated based on two endpoints of the sub-curve and its centroid.Then,all estimate matrices are clustered using hierarchical clustering method.This process can reduce the final error of the estimation matrix and improve the robustness of the algorithm,making the algorithm suitable for partial occlusions or broken objects.Finally,we calculate the total centroid of corresponding sub-curve segments,and estimate the transformation matrix again using the total centroid and two endpoints of the corresponding sub-curve segments,to improve the accuracy of the registration.The theoretical analysis and experimental results show that our algorithm can be effectively used for affine registration,and that it can deal with partial occlusions and broken objects.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第9期1074-1084,共11页 Journal of Image and Graphics
基金 国家自然科学基金项目(61063030 61263046 61165011) 国家重点基础研究发展计划(973)基金项目(2009CB320902)
关键词 仿射配准 谱系聚类 CCCTI码 部分遮挡 affine registration hierarchical clustering cyclic code of corner and tangent and inflexion points(CCCTI) partial occlusion
  • 相关文献

参考文献4

二级参考文献38

共引文献41

同被引文献19

  • 1彭晓明,陈武凡,马茜.基于B样条的弹性点配准方法[J].中国图象图形学报,2007,12(6):1079-1085. 被引量:6
  • 2Brown L G. A survey of image registration techniques. ACM Computing Surveys (CSUR), 1992, 24(4): 325-376. 被引量:1
  • 3Thirion J P. Image matching as a diffusion process: an anal- ogy with MaxwelVs demons. Medical Image Analysis, 1998, 2(3): 243-260. 被引量:1
  • 4Vercauteren T, Pennec X, Perchant A, Ayache N. Sym- metric log-domain diffeomorphic registration: a demons- based approach, h4edical Image Computing and Computer- Assisted Intervention - MICCAI 2008. Berlin Heidelberg: Springer 2008. 754-761. 被引量:1
  • 5Tang T W H, Chung A C S. Non-rigid image registration using graph-cuts. Medical Image Computing and Computer- Assisted Intervention - MICCAI 2007. Berlin Heidelberg: Springer 2007. 916-924. 被引量:1
  • 6Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Spectral demons-image registration via global spectral cor- respondence. Computer Vision-ECCV 2012. Berlin Heidel- berg: Springer 2012. 30-44. 被引量:1
  • 7Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Spectral log-demons: diffeomorphic image registration with very large deformations. International Journal of Computer Vision, 2014, 107(3): 254-271. 被引量:1
  • 8Fowlkes C, Belongie S, Clmng F, Malik J. Spectral grouping using the Nystr6m method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225. 被引量:1
  • 9Talwalkar A, Rostamizadeh A. Matrix coherence and the Nystr6m methods. In: Proceedings of the 26th Conference in Uncertainty in Artificial Intelligence. arXiv preprint arXiv: 1004.2008, 2010. 被引量:1
  • 10Drinea. P, Mahoney M W. On the NystrSm method for ap- proximating a gram matrix for improved kernel-based learu- ing. The Journal of Machine Learning Research, 2005, 6: 2153-2175. 被引量:1

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部