期刊文献+

优化药物制剂工艺的多种数据处理方法的研究进展 被引量:12

Advance in Research on Data Processing Methods of Optimizing Drug Preparation Process
原文传递
导出
摘要 目的综述优化药物制剂工艺的多种数据处理方法的研究进展。方法通过查阅国内外相关文献,在单指标数据处理方法的基础上,对多种数据处理方法进行比较、分析和总结。结果方差分析-多指标综合加权评分法、多元回归分析-效应面法、人工神经网络、多维空间三角形面积法等多指标的数据处理方法在优化药物制剂工艺中已得到广泛应用及有一定的适用范围。结论方差分析-多指标综合加权评分法、多元回归分析-效应面法、人工神经网络、多维空间三角形面积法、代谢动态数学模型等多指标数据处理方法都能揭示多因素多水平之间的规律,为优化药物制剂工艺提供可借鉴的参考。 OBJECTIVE To summarize the advance in research on a variety of data processing methods of optimizing drug preparation process. METHODS On the basis of data processing methods of single index, this paper compares, analyzes and summarizes a variety of data processing methods in relevant literature. RESULTS Multiple indicator data processing method, such as analysis of variance-comprehensive weighted of multi-index, multiple regression analysis-response surface methodology, artificial neural network, and multi-dimensional space triangle area, has been widely used in the optimization of drug preparation process in a certain scope. CONCLUSION Analysis of variance-comprehensive weighted of multi-index, multiple regression analysis-response surface methodology, artificial neural networks, and multidimensional spatial triangular area can reveal the principles among multi-factors of multi-levels, thus can provide reference for optimizing drug preparation technology.
出处 《中国药学杂志》 CAS CSCD 北大核心 2013年第16期1333-1337,共5页 Chinese Pharmaceutical Journal
关键词 方差分析-多指标综合加权评分法 多元回归分析·效应面法 人工神经网络 多维空间三角形面积法 analysis of variance-comprehensive weighted of multi-index multiple regression analysis-response surface methodolo-gy artificial neural network multi-dimensional space area of a triangle method
  • 相关文献

参考文献2

二级参考文献8

  • 1Jit S, Dadhwal M, Prakash O, et al. Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyciohexane-contaminated soil. Int J Syst Evol Mocrobiol, 2008; 58, 2665-9. 被引量:1
  • 2Zhang Y, Zhu Z, Yang W, et al. An emerging recombinant Human Enterovirus 72 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China. Virol J, 2010; 7, 94. 被引量:1
  • 3Riggio MP, Lennon A. Rapid identification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, and Haemophilus parephrophilus by restriction enzyme analysis of PCR-amplified 16S rRNA genes. J Clin Microbiol, 1997; 35, 1630-2. 被引量:1
  • 4张立明.人工神经网络的模型及应用[M].上海:复旦大学出版社,1994.. 被引量:10
  • 5GROSSBERG S.Neural Networks and Natural Intelligence[ M] . MIT Press, 1988. 被引量:1
  • 6GROSSBERG S. Nonlinear Neural Networks: Principles, Machiness and Architectures[ J]. Neural Networks, 1988, (1):15- 57. 被引量:1
  • 7ROTH M.Neural Network Technology for ATR[J].IEE Trans. Neural Networks, 1990,(1):29- 32. 被引量:1
  • 8FUKUSHIMA K. A Neural Network for Visual Pattern Recognition[J].IEE Computer, 1988,(3):65- 74. 被引量:1

共引文献49

同被引文献109

引证文献12

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部