摘要
研究了 2 .5L小罐培养过程中控制温度为 2 5℃~ 35℃时对细胞生长和MTG合成的影响 .结果表明 :当控制相对较低的温度时 ,细胞生长的延滞期较长 ,当控制温度较高时 ,细胞生长的延滞期较短 ,达到最大DCW和最高MTG酶活的时间均较短 ;通过研究各种不同模型对细胞生长的影响得到最适合描述S .mobaraense生长与温度之间的关系方程为Schoolfield方程 ;通过对最大DCW和最大MTG酶活进行数学模拟 ,发现方程X(U) =-a0 (θ -θ0 ) 2 +X1(U1) +a1{ 1-exp[a2 ·(θ-θ1) ) ]}能较好地描述最大DCW和最大MTG酶活与温度之间的关系 ;通过研究延滞时间与温度之间的关系 ,得到描述两者之间关系的最适关系式为 :λ =l/ (A0 +A1·T +A1·T2 +A2 ·T3 +A) 4·T4 ) ;通过对单一温度以及分阶段控制温度的细胞生长及产酶的模型预测值及实验值进行比较 ,发现模型预测值与实验结果较吻合 .图 6表 6参
Batch MTG fermentations by S. mobaraense WSH Z2 at various temperatures ranging between 25℃~35℃ were studied. At 30℃, MTG activity and cell dry weight were higher than others, reached 2.94 u/mL and 25.1 g/L, respectively. All kinds of models for effect of temperature on cell growth were studied. The result showed that Schoolfield equation fit the experimental data fairly well. Eq. X(U)=-a 0( θ - θ 0) 2+ X 1(U 1)+a 1 {1-exp[ a 2·( θ-θ 1 )]} can describe the relationship between maximum of DCW (MTG activity) and temperature. The lag time temperature relation can be described by Eq. λ =l/( A 0+ A 1· T + A 1· T 2+ A 2· T 3+ A ) 4· T 4). The mode values of cell growth and MTG activity were compared with experimental data, and the result showed that model simulation values and experimental data fit very well. Fig 6, Tab 6, Ref 18
出处
《应用与环境生物学报》
CAS
CSCD
2000年第5期462-467,共6页
Chinese Journal of Applied and Environmental Biology
基金
教育部优秀跨世纪人才培养计划
关键词
谷氨酰胺转胺酶
分批发酵
模型化研究
MTG
Streptoverticillium mobaraense
microbial transglutaminase
batch fermentation
modeling