期刊文献+

协同过滤推荐算法的研究与改进 被引量:4

Research and Improvement of Collaborative Filtering Recommendation Algorithm
下载PDF
导出
摘要 传统的基于用户的协同过滤推荐算法在计算用户间相似性时依赖于用户-项目评分矩阵,但在实际的商业系统中,用户参与的评价往往非常少,这样计算出的相似性精确度通常很低。文中提出结合用户相似性和基于项目分类特征的相似性计算方法,计算用户间的相似性,形成目标用户的近邻集合,完成向目标用户的推荐。文中在MovieLens数据集上的实验结果表明,相对于Pearson相似性的协同过滤推荐算法,文中提出的改进算法在推荐质量方面有明显提高。 The traditional user-based collaborative filtering algorithm calculates users' similarity according to user-item rating matrix, but in real business system, the user-ratings data is very sparse, so the calculation accuracy is very low, The calculation method mixing user similarity and project classification features based similarity is proposed for similarity calculation between users, get target user' s close neighbor set,calculate recommended results. The experimental results on the MovieLens data set show that, compared with the Pearson similar collaborative filtering algorithm, the above improved algorithm raises the recommendation quality significantly.
作者 范虎 花伟伟
出处 《计算机技术与发展》 2013年第9期66-69,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61170060) 安徽省自然科学基金(11040606M135) 安徽省高等学校自然科学基金重点项目(KJ2011A083)
关键词 基于用户 协同过滤 推荐系统 项目分类 相似性计算 user-based collaborative filtering recommendation system project classification similar calculations
  • 相关文献

参考文献14

二级参考文献59

共引文献502

同被引文献51

  • 1石琳,王刊良.网上购物与网上学习中的个人化推荐系统的比较[J].清华大学学报(自然科学版),2006,46(z1):1030-1035. 被引量:11
  • 2张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:192
  • 3Resnick P,Iacovou N, Suchak M,et al. GroupLens: an open archi-tecture for collaborative filtering of netnews [ C]//Proc of ACM Con-ference on Computer Supported Cooperative Work. New York; ACMPress, 1994: 175-186. 被引量:1
  • 4Hill W, Stead L, Rosenstein M, et al. Recommending and evaluatingchoices in a virtual community of use [ C ] //Proc of SIGCHI Confer-ence on Human Factors in Computing Systems. New York: ACMPress,1995 :194-201. 被引量:1
  • 5Jannach D, Zanker M, Felfemig A, et al. Recommender systems: anintroduction[M].蒋凡,译.北京:人民邮电出版社,2011. 被引量:1
  • 6Sarwar B,Karypis G,Konstan J,et al. Item-based collaborative filte-ring recommendation algorithms [ C ]//Proc of the 10th Intematio-nalConference on World Wide Web. New York: ACM Press, 2001 :285-295. 被引量:1
  • 7Eckhardt A. Similarity of users,( content-based) preference modelsfor collaborative filtering in few ratings scenario [ J]. Expert Sys-tems with Applications, 2012, 39(14) : 11511-11516. 被引量:1
  • 8Choi K, Suh Y. A new similarity function for selecting neighbors foreach target item in collaborative filtering [ J ]. Kowledge-basedSystems, 2013,37(1):146-153. 被引量:1
  • 9Ushiama T, Tominaga K. A method for personalized ranking of itemsbased on similarity between twitter users[ C]//Proc of the 8th Inter-national Conference on Ubiquitous Information Management and Com-munication. New York: ACM Press, 2014. 被引量:1
  • 10Lemire D, Maclachlan A. Slope one predictors for online rating basedcollaborative filtering [ C ] //Proc of SIAM Data Mining Conference.2005. 被引量:1

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部