摘要
本文采用时空守恒元解元法对为预测气井中的压强温度而建立的一类双曲守恒方程组进行求解.通过对一口井的数值模拟实验表明,此法相对龙格库塔解法和LxF解法其计算结果更接近真实值,具有更高计算精度.
In this paper, a new numerical approach by CE/SE method(space-time conservation element and solution element method) is applied to solve a class of hyperbolic systems of conservation laws con- cerning the variation of the pressure and temperature in gas wells. The basic data of real well is used for the case history calculations. Comparison with the results by LxF (Lax Friedriehs) Method and Runge- Kutta method shows this approach is more fitting to the values of real measurement and the new method is of high accuracy.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第4期693-697,共5页
Journal of Sichuan University(Natural Science Edition)
基金
成都信息工程学院校选项目(CRF201119)
关键词
双曲方程组
守恒律
预测
CE
SE法
hyperbolic systems
conservation laws
prediction
CE/SE method